
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

IT3205: Fundamentals of Software
Engineering

IT3205 - Software Testing and Quality Assurance

Software Testing and Quality

UCSC - 2014 2

Software Testing and Quality
Assurance
Duration: 8 hours

Learning Objectives
• State the software testing process and required

documentation

• Explain the different software testing techniques and
integration strategies

• Design test cases and write test programs for a given simple
software problem

IT3205 - Software Testing and Quality Assurance

software problem

• Describe the code verification techniques

• Describe the importance of software quality

• Distinguish the difference between product quality and
process quality

• Describe some important quality standards with respect to
software

UCSC - 2014 3

Detailed Syllabus
6.1 Verification and Validation

6.2 Techniques of testing

6.2.1 Black-box and White-box testing

6.2.2 Inspections

6.3 Levels of testing

IT3205 - Software Testing and Quality Assurance

6.3 Levels of testing
6.3.1 Unit testing

6.3.2 Integration Testing

6.3.3 Interface testing

6.3.4 System testing

6.3.5 Alpha and beta testing

UCSC - 2014 4

Detailed Syllabus
6.3 Levels of testing

6.3.6 Regression testing

6.3.7 Back-to-back testing and Thread testing

6.3.8 Statistical Software Testing

6.3.9 Object Oriented Testing

6.4 Design of test cases

IT3205 - Software Testing and Quality Assurance

6.4 Design of test cases

6.5 Quality management activities

6.6 Product and process quality

6.7 Standards

6.7.1 ISO9000

6.7.2 Capability Maturity Model (CMM)

UCSC - 2014 5

6.1 VERIFICATION AND
VALIDATION

IT3205 - Software Testing and Quality Assurance

VALIDATION

UCSC - 2014 6

Validation and Verification
• Validation and Verification (V & V) is the name given to the

checking and analysis processes that ensure that software
conforms to its specification and meets the needs of the
customers who are paying for the software.

• V & V is a whole life-cycle process. It starts with requirements
reviews and continues through design reviews and code

IT3205 - Software Testing and Quality Assurance

reviews and continues through design reviews and code
inspections to product testing. There should be V& V activities
at each stage of software process.

• Validation: Are we building the right product?

• Verification: Are we building the product right?

UCSC - 2014 7

Validation and Verification
• Within the V & V process, two techniques of system checking and analysis

may be used:

1. Software Inspections

– Analyze and check system representations such as the requirements
documents, design diagrams and program source code. They may be applied
at all stages of the development process. Inspections may be supplemented by
some automated analysis of the source text of a system or associated

IT3205 - Software Testing and Quality Assurance

some automated analysis of the source text of a system or associated
documents. Software inspections and automated analysis are static V & V
techniques as they do not require the system to be executed.

2. Software Testing

– Involves executing an implementation of the software with test data and
examining the outputs of the software and its operational behavior to check
that it is performing as required. Testing is a dynamic technique of V & V
because it works with an executable representation of the system.

UCSC - 2014 8

Software Testing Procedure
• Testing procedures should be established at the start of any software

project. All testing carried out should be based on a test plan, this should
detail which tests are to be carried out.

• For each test, the following information should be included in the test
plan:

– the pre-requisites for the test.

IT3205 - Software Testing and Quality Assurance

– the steps required to carry out the test.

– the expected results of the test.

• The outcome of any tests should be recorded in a test results document
that include whether the test succeeded or failed and a description of the
failure. Test results for all passes through the test plan must be recorded
to allow accurate records to be kept of where problems occur and when
they were identified and corrected.

UCSC - 2014 9

Testing Process
1. Run the tests as defined by the test plan.

Note: Testing should not stop when the first problem is encountered,
unless it is so severe that the rest of the tests would be meaningless.
Rather all testing in the test plan should be carried out and then the
errors addressed.

2. Record the outcome of each test in the test report, both success and

IT3205 - Software Testing and Quality Assurance

2. Record the outcome of each test in the test report, both success and
failure should be reported. For failed tests the nature of the problem
should be described in sufficient detail to allow it to be corrected and to
allow analysis of the types of errors being found.

3. Correct the errors that were documented from the test run.

4. Repeat the process until no errors are identified or error rate is
sufficiently low. If the error rate is low then it may be sufficient to simply
re-test the failed errors. If the error rate is high then all tests should be
re-run.

UCSC - 2014 10

Dynamic & Static Verification

• Dynamic verification

– Concerned with exercising and observing product
behavior (testing)

• includes executing the code

IT3205 - Software Testing and Quality Assurance

• Static verification

– Concerned with analysis of the static system
representation to discover problems

• does not include execution

UCSC - 2014 11

Dynamic testing process

IT3205 - Software Testing and Quality Assurance

Unit Testing

Sub-System
Testing

System
Testing

UCSC - 2014 12

Testing
Acceptance

Testing
Individual
components

collections of
components
(sub-systems) The whole

finished system
- developers

The finished
system - users

Testing in the project lifecycle

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 13

6.2 TECHNIQUES OF TESTING

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 14

Black-box Testing
• Approach to testing where the program is considered as a

‘black-box’

• The program test cases are based on the system specification

• Inputs from test data may reveal anomalous outputs, i.e.
defects

IT3205 - Software Testing and Quality Assurance

defects

• Test planning can begin early in the software process

• Main problem - selection of inputs
– equivalence partitioning

UCSC - 2014 15

Black-box Testing

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 16

White-box Testing
• Sometimes called Structural testing or glass box testing

• Derivation of test cases according to program structure.

• Knowledge of the program used to identify additional test
cases

• Objective is to exercise all program statements (not all path

IT3205 - Software Testing and Quality Assurance

• Objective is to exercise all program statements (not all path
combinations)

UCSC - 2014 17

Structural testing

IT3205 - Software Testing and Quality Assurance

Test Data

DerivesTests

UCSC - 2014 18

Test Output
Component Component

Code

DerivesTests

Software Inspection
• Inspection techniques include,

– Program inspections

– Automated source code analysis

– Formal verification

• Can only check the correspondence between a

IT3205 - Software Testing and Quality Assurance

• Can only check the correspondence between a
program and its specification (verification)

• Unable to demonstrate that the software is
operationally useful.

• Can not check non-functional requirements
(performance, reliability)

UCSC - 2014 19

Software Inspection
• Inspections not require execution of a system so may

be used before implementation.

• They have been shown to be an effective technique
for discovering program errors.

– Many different defects may be discovered in a single

IT3205 - Software Testing and Quality Assurance

– Many different defects may be discovered in a single
inspection. In testing, one defect may mask another, so
several executions are required.

– The reuse domain and programming knowledge so
reviewers are likely to have seen the types of error that
commonly arise.

UCSC - 2014 20

Program Inspections

• Formalized approach to document reviews

• Intended explicitly for defect detection (not
correction).

• Defects may be logical errors, anomalies in the

IT3205 - Software Testing and Quality Assurance

• Defects may be logical errors, anomalies in the
code that might indicate an erroneous
condition (e.g. an uninitialized variable) or
non-compliance with standards.

UCSC - 2014 21

Inspection Roles
Inspector Role

Programmer or
Designer

The programmer or designer responsible for producing the
program or document. Responsible for fixing defects
discovered during the inspection process.

Inspector Finds errors, omissions and inconsistencies in programs and
documents. May also identify broader issues that are

IT3205 - Software Testing and Quality Assurance

documents. May also identify broader issues that are
outside the scope of the inspection team.

Reader Presents the code or document at an inspection meeting.

Scribe Records the results of the inspection meeting.

Chairman or
Moderator

Manages the process and facilitates the inspection. Reports
process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements, checklist
updating, standards development etc.

UCSC - 2014 22

Inspection Pre-conditions
• A precise specification must be available.

• Team members must be familiar with the
organization standards.

• Syntactically correct code or other system
representations must be available.

IT3205 - Software Testing and Quality Assurance

representations must be available.

• An error checklist should be prepared.

• Management must accept that inspection will
increase costs early in the software process.

• Management should not use inspections for staff
appraisal i.e. finding out who makes mistakes.

UCSC - 2014 23

The Inspection Process

IT3205 - Software Testing and Quality Assurance

Planning Follow-up

UCSC - 2014 24

Overview

Individual
preparation

Inspection
meeting

Rework

The Inspection Process
• System overview presented to inspection team.

• Code and associated documents are distributed to
inspection team in advance.

• Inspection takes place and discovered errors are
noted.

IT3205 - Software Testing and Quality Assurance

noted.

• Modifications are made to repair discovered errors.

• Re-inspection may or may not be required.

UCSC - 2014 25

Inspection Checks

IT3205 - Software Testing and Quality Assurance

Data faults Are all program variables initialized before their values are used?
Have all constants been named? Should the upper bound of
arrays be equal to the size of the array or Size -1? If character
strings are used, is a delimiter explicitly assigned? Is there any
possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct? Is each
loop certain to terminate? Are compound statements correctly

UCSC - 2014 26

loop certain to terminate? Are compound statements correctly
bracketed? In case statements, are all possible cases accounted
for? If a break is required after each case in case statements, has
it been included?

Input/output faults Are all input variables used? Are all output variables assigned a
value before they are output? Can unexpected inputs cause
corruption?

Inspection Checks

IT3205 - Software Testing and Quality Assurance

Interface faults Do all function and method calls have the correct number of
parameters? Do formal and actual parameter types match? Are
the parameters in the right order? If components access shared
memory, do they have the same model of the shared memory
structure?

Storage
management faults

If a linked structure is modified, have all links been correctly
reassigned? If dynamic storage is used, has space been allocated

UCSC - 2014 27

management faults reassigned? If dynamic storage is used, has space been allocated
correctly? Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into account?

6.3 LEVELS OF TESTING

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 28

Test Phases

IT3205 - Software Testing and Quality Assurance

Test Phase Test Plan Author Technique Run by

Unit Test Code design Designer White box, Black
box,
Static

Programmer

Integration
Test

Functional
specification

Author of
specification

Black box, white
box, Top-down,

Programming
team

UCSC - 2014 29

Test specification specification box, Top-down,
bottom-up

team

Interface Test System
Specification

Authors of
the system
specification

White box Programmers

System Test Requirements Analyst Black box, stress
testing,
performance
testing

System test
team

Test Phases

IT3205 - Software Testing and Quality Assurance

Test Phase Test Plan Author Technique Run by

Acceptance
Test

Requirements Analyst /
Customer

Black box Analyst /
Customer

Alpha Test No test plan Black box Selected set of
users

Beta Test No test plan Black box Any user

UCSC - 2014 30

Beta Test No test plan Black box Any user

Regression
Test

Functional
specification /
Requirements

Analyst Black box Development
team, System
test team

Unit Testing
• Unit Testing is carried out as a part of the coding

task. This phase is based on the design of the
software for a piece of code. Unit testing should
prove the following about the code

– Robust –the code should not fail under any circumstances.

IT3205 - Software Testing and Quality Assurance

– Robust –the code should not fail under any circumstances.

– Functionally correct –the code should carry out the task
defined by the code design.

– Correct interface –the inputs and outputs from the code
should be as defined in the design.

UCSC - 2014 31

Unit Test Plan
• The unit test plan must be based on the design of the

code and not the code itself. Therefore, the test plan
will be written after the completion of design but
before the start of the coding phase.

• The test plan is the responsibility of the designer of

IT3205 - Software Testing and Quality Assurance

• The test plan is the responsibility of the designer of
the code. The testing is usually carried out by the
author of the code.

UCSC - 2014 32

Integration/Sub-systems Testing
• Integration Testing is carried out after the separate

software modules have been unit testing. Integration
testing is based on the functional specification of the
software. Integration testing should prove the
following about the software:

IT3205 - Software Testing and Quality Assurance

following about the software:

– Integration -the modules of the system should interact as
designed.

– Functionally correct -the system should behave as defined
in the functional specification.

UCSC - 2014 33

Integration test plan

• This is based on the specification of the
system. The test plan is usually written by the
authors of the system specification to avoid
any assumptions made during design from

IT3205 - Software Testing and Quality Assurance

any assumptions made during design from
being incorporated into the test plan.

UCSC - 2014 34

Incremental Integration Testing
Initially, integrate a minimal system configuration and test the system. Then
add components to this minimal configuration and test after each added
increment.

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 35

T1,T2 and T3 tests are carried out after integration of components A and B. If
the tests are successful, add C and carry out tests T1,T2,T3 and T4. If new
errors introduced, that is due to the integration of C.

Top-Down Integration Testing
• In top-down integration, the high-level components of a system are

integrated and tested before design and implementation of some of the
high-level components has been completed.

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 36

Bottom-up Integration Testing
• Low-level components are integrated and tested before the higher-level

components have been developed.

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 37

Interface Testing
• Interface testing takes place when modules or subsystems are

integrated to create large systems.

• Each module or sub-system has a defined interface which is
called by other program components.

• Objectives are to detect faults due to interface errors or

IT3205 - Software Testing and Quality Assurance

• Objectives are to detect faults due to interface errors or
invalid assumptions about interfaces.

• Particularly important for object-oriented development as
objects are defined by their interfaces.

• Cannot be detected by testing the individual objects.
– The errors will occur due to the interaction between objects.

UCSC - 2014 38

Types of Interfaces
• Parameter Interfaces

– These are interfaces where the data or sometimes function references are
passed from one component to another.

• Shared memory Interfaces

– These are interfaces where block of memory is shared between sub-systems.
Data is placed in memory by one sub-system and retrieved from there by
other sub-system.

IT3205 - Software Testing and Quality Assurance

other sub-system.

• Message passing Interfaces

– These are interfaces where one subsystem request a service from another
sub-system by passing a message to it.

• Procedural Interfaces

– These are interfaces where one sub-system encapsulates a set of procedures
which can be called by other subsystem. Objects and abstract data types have
this form of interface.

UCSC - 2014 39

System Testing

• System testing is carried out at the completion
of the integration testing. The purpose of
system testing is to prove that the software
meets the agreed user requirements and

IT3205 - Software Testing and Quality Assurance

meets the agreed user requirements and
works in the target environment. System
testing covers both functional and non-
functional requirements.

UCSC - 2014 40

System Test Plan
• The system test plan is based around the agreed requirements. Test plan

covers functional requirements and non-functional requirements such as
performance. The system test plan is written by the author of the
requirements document to avoid assumption introduced during
specification.

• The system test plan will also include tests to cover

IT3205 - Software Testing and Quality Assurance

– Recovery – Force the system to crash and then try to recover to a sensible
state.

– Security – Attempt to access the system without the correct authority, or
attempt to carry out restricted functions.

– Stress – Attempt to break the system by overloading it.

– Performance – Ensure the system meets the performance requirements.

UCSC - 2014 41

Acceptance Testing

• Acceptance testing is carried out at the
customers site with the customer in
attendance. The purpose of the acceptance
test is to show to the customer that the

IT3205 - Software Testing and Quality Assurance

test is to show to the customer that the
software does indeed work. These tests are
usually a sub set of the system test.

UCSC - 2014 42

Acceptance test plan

• This should be agreed with the customer after
the requirements for the software have been
agreed. Sometimes the customer will write
the test plan in which case it must be agreed

IT3205 - Software Testing and Quality Assurance

the test plan in which case it must be agreed
with the software developers.

UCSC - 2014 43

Alpha Testing

• Alpha testing is the first real use of the
software product. Having completed system
testing the product will be given to a small
number of selected customers or possible just

IT3205 - Software Testing and Quality Assurance

number of selected customers or possible just
distributed within the company itself. The
software will be used ‘in anger’ and errors
reported to the development and
maintenance team.

UCSC - 2014 44

Beta Testing

• After alpha testing has been completed and
any changes made a new version of the
product will be released to much wider
audience. The objective of Beta testing is to

IT3205 - Software Testing and Quality Assurance

audience. The objective of Beta testing is to
iron out the remaining problems with the
product before it is put on the general release.

UCSC - 2014 45

Regression Testing
• Regression testing carried out after any changes are

made to a software application. The purpose of
regression test is to prove that the change has been
made correctly and that the change has not
introduced any new errors.

IT3205 - Software Testing and Quality Assurance

introduced any new errors.

• Regression test plans are usually a sub-set of the
integration or systems test plans. It is designed to
cover enough functionality to give confidence that
the change has not effected any other part of the
system.

UCSC - 2014 46

Back-to-back testing

• Back-to-back testing means that multiple
versions of the software are executed on the
same test data. If they all agree on the answer,
it is assumed that they are all correct.

IT3205 - Software Testing and Quality Assurance

it is assumed that they are all correct.

UCSC - 2014 47

Thread testing
• Based on testing an operation which involves a

sequence of processing steps which thread their way
through the system

• Start with single event threads then go on to multiple
event threads

IT3205 - Software Testing and Quality Assurance

event threads

– Advantages
• Suitable for real-time and object-oriented systems

– Disadvantage
• Difficult to assess test adequacy, because of large number of event

combinations

UCSC - 2014 48

Statistical Software Testing
• Statistical testing involves exercising a program with

generated random inputs, the test profile and the
number of generated inputs being determined
according to criteria based on program structure or
software functionality.

IT3205 - Software Testing and Quality Assurance

software functionality.

• In case of complex programs, the probabilistic
generation must be based on a black box analysis,
the adopted criteria being defined from behavior
models deduced from the specification.

UCSC - 2014 49

Object Oriented Testing
In an object oriented system, four levels of testing can be identified:

1. Testing the individual operations associated with objects – These are
functions or procedures and the black-box and white-box approaches
may be used.

2. Testing individual object classes – The principle of black-box testing is
unchanged but the notion of an equivalence class must be extended to

IT3205 - Software Testing and Quality Assurance

unchanged but the notion of an equivalence class must be extended to
cover related operation sequences.

3. Testing clusters of objects – Strict top-down or bottom-up integration
may be inappropriate to create groups of related objects. Other
approaches such as scenario based testing should be used.

4. Testing the object oriented system – V & V against the systems
requirements specification is carried out in exactly the same way as for
any other type of system.

UCSC - 2014 50

Object Class Testing
• When testing objects, complete test coverage should

include:

1. the testing in isolation of all operations associated with
the object;

2. the setting and interrogation of all attributes associated

IT3205 - Software Testing and Quality Assurance

2. the setting and interrogation of all attributes associated
with the object;

3. the exercise of the object in all possible states. This
means that all events that cause a state change in the
object should be simulated.

UCSC - 2014 51

Object Integration
• In object oriented systems, there is no obvious ‘top’

that provides for the integration nor is there a clear
hierarchy of objects that can be created.

• Clusters therefore have to be created using
knowledge of there operation and the features of the

IT3205 - Software Testing and Quality Assurance

knowledge of there operation and the features of the
system that are implemented by these clusters.

UCSC - 2014 52

Object Integration
• There are three possible approaches to integration

testing that may be used:
1. Use-case or scenario-based testing – Testing can be based on the

scenario descriptions and object clusters created to support the use-
cases that relate to that mode of use.

2. Thread testing – Thread testing is based on testing the system’s

IT3205 - Software Testing and Quality Assurance

2. Thread testing – Thread testing is based on testing the system’s
response to a particular input or set of input events.

3. Object interaction testing – An intermediate level of integration
testing can be based on identifying ‘method – message ‘ paths.
These are traces through a sequence of object interactions which
stop when an object operation does not call on the services of any
other object.

UCSC - 2014 53

6.4 DESIGN OF TEST CASES

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 54

Design of Test Cases

• Test case design is a part of system and
component testing.

• The objective of the test case designing
process is to develop test cases.

IT3205 - Software Testing and Quality Assurance

process is to develop test cases.

• These test cases are used to detect program
defects and also it detects whether the system
meets its requirements.

UCSC - 2014 55

Design of Test Cases

• When designing a test case,

– select a particular feature of the system.

– Select set of inputs that execute that feature.

– Decide possible outputs of the test case.

IT3205 - Software Testing and Quality Assurance

– Decide possible outputs of the test case.

– Check the difference between actual and the
expected out comes after the testing procedure.

UCSC - 2014 56

Test case designing approaches
• Requirements-based testing -Test cases are designed to test

the system requirements. Mostly used at the system testing
stage. Test cases should be created for each requirement to
verify that the system meets requirements.

• Partition testing - Identify input and output partitions. The
system execute inputs from all partitions.

IT3205 - Software Testing and Quality Assurance

system execute inputs from all partitions.

• Structural testing - Use the knowledge of program structure
to design tests that exercise all parts of the program. When
testing a program, each statement should be execute at least
once.

UCSC - 2014 57

6.5 QUALITY MANAGEMENT
ACTIVITIES

IT3205 - Software Testing and Quality Assurance

ACTIVITIES

UCSC - 2014 58

Quality Management
• Software quality management can be structured into three

principal activities:

1. Quality assurance

• The establishment of a framework of organizational procedures and
standards which lead to high quality software.

IT3205 - Software Testing and Quality Assurance

2. Quality planning

• The selection of appropriate procedures and standards from this
framework and adaptation of these for a specific software project.

3. Quality control

• The definition and enactment of processes which ensure that the
project quality procedures and standards are followed by the software
development team.

UCSC - 2014 59

Software Quality Management
• Quality management provides an independent check on the

software development process. The deliverables from the
software process are input to the quality management
process and are checked to ensure that they are consistent
with organizational standards and goals.

• Quality management should be separated from project

IT3205 - Software Testing and Quality Assurance

• Quality management should be separated from project
management so that quality is not compromised by
management responsibilities for project budget and schedule.

• An independent team should responsible for quality
management and should report to the management above
the project management level.

UCSC - 2014 60

Software Quality Management
• There must be a management commitment to quality.

• Concerned with ensuring that the required level of quality is
achieved in a software product.

• Involves defining appropriate quality standards and
procedures and ensuring that these are followed.

IT3205 - Software Testing and Quality Assurance

procedures and ensuring that these are followed.

• Should aim to develop a ‘quality culture’ where quality is seen
as everyone’s responsibility.

UCSC - 2014 61

What is Quality?
• Quality, simplistically, means that a product should

meet its specification.

• This is problematical for software systems

– There is a tension between customer quality requirements
(efficiency, reliability, etc.) and developer quality

IT3205 - Software Testing and Quality Assurance

(efficiency, reliability, etc.) and developer quality
requirements (maintainability, reusability, etc.);

– Some quality requirements are difficult to specify in an
unambiguous way;

– Software specifications are usually incomplete and often
inconsistent.

UCSC - 2014 62

What is Quality?
• Traditional view

– quality is about perfection/bug free code. Generally
associated with testing at the end of development. Testing
cannot introduce quality to a product, it can only reduce
the number of defects in the product.

IT3205 - Software Testing and Quality Assurance

the number of defects in the product.

• Modern view (ISO 9000)

– Good quality is not perfection but fit for the purpose. Build
the right product in the right way. Do not over engineer
(too expensive). Do not under engineer (not fit for the
purpose).

UCSC - 2014 63

Scope of Quality Management

• Quality management is particularly important
for large, complex systems. The quality
documentation is a record of progress and
supports continuity of development as the

IT3205 - Software Testing and Quality Assurance

supports continuity of development as the
development team changes.

• For smaller systems, quality management
needs less documentation and should focus
on establishing a quality culture.

UCSC - 2014 64

Quality Management Activities
• Quality assurance

– Establish organizational procedures and standards for quality.

• Quality planning
– Select applicable procedures and standards for a particular project and

modify these as required.

• Quality control

IT3205 - Software Testing and Quality Assurance

• Quality control
– Ensure that procedures and standards are followed by the software

development team.

Quality management should be separate from project
management to ensure independence.

UCSC - 2014 65

Quality Management and Software Development

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 66

Standards &
procedures

Quality plan Quality review reports

6.6 PRODUCT AND PROCESS
QUALITY

IT3205 - Software Testing and Quality Assurance

QUALITY

UCSC - 2014 67

Process and Product Quality

• The quality of a developed product is
influenced by the quality of the production
process.

• This is important in software development as

IT3205 - Software Testing and Quality Assurance

• This is important in software development as
some product quality attributes are hard to
assess.

• However, there is a very complex and poorly
understood relationship between software
processes and product quality.

UCSC - 2014 68

Process-based Quality
• There is a straightforward link between process and

product in manufactured goods.

• More complex for software because:

– The application of individual skills and experience is
particularly important in software development;

IT3205 - Software Testing and Quality Assurance

particularly important in software development;

– External factors such as the novelty of an application or
the need for an accelerated development schedule may
impair product quality.

• Care must be taken not to impose inappropriate
process standards - these could reduce rather than
improve the product quality.

UCSC - 2014 69

Process-based Quality

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 70

Practical Process Quality
• Define process standards such as how reviews should

be conducted, configuration management, etc.

• Monitor the development process to ensure that
standards are being followed.

• Report on the process to project management and

IT3205 - Software Testing and Quality Assurance

• Report on the process to project management and
software procurer.

• Don’t use inappropriate practices simply because
standards have been established.

UCSC - 2014 71

6.7 STANDARDS

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 72

Quality Assurance and Standards
• Quality assurance(QA) activities define a framework for achieving

software quality.

• There are two types of standards that may be established as a part of the
quality assurance process:

• Product standards

– These are standards that apply to the software product being developed. They

IT3205 - Software Testing and Quality Assurance

– These are standards that apply to the software product being developed. They
include standards such as document standards (eg. Specification of a class),
coding standards and user interface standards. Product quality includes
reusability, usability, portability, maintainability etc.

• Process standards

– These are standards that define the processes which should be followed
during software development. They may include definitions of specification,
design and validation processes and a description of the documents which
must be generated in the course of these processes.

UCSC - 2014 73

Importance of Standards

• Encapsulation of best practice

– avoids repetition of past mistakes.

• They are a framework for quality assurance
processes

IT3205 - Software Testing and Quality Assurance

processes

– they involve checking compliance to standards.

• They provide continuity

– new staff can understand the organization by
understanding the standards that are used.

UCSC - 2014 74

Product and Process Standards

IT3205 - Software Testing and Quality Assurance

Product standards Process standards

Design review form Design review conduct

Requirements document structure Submission of documents to CM

Method header format Version release process

UCSC - 2014 75

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

Problems with Standards

• They may not be seen as relevant and up-to-
date by software engineers.

• They often involve too much bureaucratic
form filling.

IT3205 - Software Testing and Quality Assurance

form filling.

• If they are unsupported by software tools,
tedious manual work is often involved to
maintain the documentation associated with
the standards.

UCSC - 2014 76

ISO9000
• ISO9000 is a set of international standards that can be applied

to a range of organizations from manufacturing through to
service industries.

• ISO9001 is the most general of these standards and applies to
organizations concerned with quality processes regarding
design, development and maintain products. This is a generic

IT3205 - Software Testing and Quality Assurance

design, development and maintain products. This is a generic
model of a quality process which describes various aspects of
that process and defines which standards and procedures
could exist within an organization.

• ISO 9000-3 interprets ISO 9000 for software development.

UCSC - 2014 77

ISO9000
• ISO900-1 is a general guideline which gives background

information about the family of standards.

• ISO9002 and ISO9003 are subsets of ISO9001.

• ISO9002 is used for situations in which there is no design.

• ISO9003 is used for situations in which there is neither design

IT3205 - Software Testing and Quality Assurance

• ISO9003 is used for situations in which there is neither design
nor production (eg. Retail).

• ISO9000-3 is a guideline on how to use ISO9001 for software
development.

UCSC - 2014 78

ISO9000
• When asked whether cost, timescale or quality was most important when

completing against another company for a software project Tomoo
Mastubara of Hitachi Software Engineering replied

“Quality is first! Always first. If we deliver bad quality to the customer,
the customer will complain many times, over and over. But if we are
late, he will complain only once and then may be he will forget. And if
we have underestimated the cost, the customer will not complain at all.

IT3205 - Software Testing and Quality Assurance

we have underestimated the cost, the customer will not complain at all.
– for he will know we have made the mistake. WE will bear the burden
of the cost mistake”

• Any serious quality initiative will repay any set-up costs within the first
years through improved productivity and customer satisfaction.

UCSC - 2014 79

ISO9000 and Quality Management

IT3205 - Software Testing and Quality Assurance

UCSC - 2014 80

Documentation Standards
• Documentation standards in a software project are

particularly important as documents are the only tangible way
of representing the software and the software process.

• There are three types of documentation standards

IT3205 - Software Testing and Quality Assurance

• There are three types of documentation standards
1. Documentation Process Standards

• Define the process which should be followed for document production.

2. Document Standards
• Govern the structure and presentation of documents.

3. Document Interchange Standards
• Ensure that all electronic copies of documents are compatible.

UCSC - 2014 81

A document production process including quality checks

IT3205 - Software Testing and Quality Assurance

Create initial
draft

Review draft
Incorporate

review
Comments

Re-draft
document

Approved Document

Proofread Produce final Check final

Stage 1:
Creation

UCSC - 2014 82

Layout text Review layout
Produce Print

masters
Print copies

Approved Document

Proofread
text

Produce final
draft

Check final
draft

Stage 2:
Polishing

Stage 3:
Production

Capability Maturity Model (CMM)

• CMM was developed at the Software
Engineering Institute (SEI) in Pittsburgh, and it
is very much a rival to ISO9001 for software.

• CMM Is a scheme to classify a software

IT3205 - Software Testing and Quality Assurance

• CMM Is a scheme to classify a software
development organization according to its
capability. CMM identifies five different
maturity levels for software developing
organizations.

UCSC - 2014 83

Capability Maturity Model (CMM)

IT3205 - Software Testing and Quality Assurance

1. Initial - The software development is run informally, and depends on the
competence of some persons.

2. Repeatable - There is a common system for project management and
control.

3. Defined - There is a common system for the software engineering
activities.

UCSC - 2014 84

activities.

4. Managed - The software development process is stable and gives a
consistent product quality. Measurements are used to keep the process
and product under control.

5. Optimizing - The software development process contain its own
improvement process. Process improvement is budgeted and planned
and is an integral part of the organization’s process.

Key Points
• Software quality management is concerned with

ensuring that software has a low number of defects
and that it reaches the required standards of
maintainability, reliability, portability and so on

• SQM includes defining standards for processes and

IT3205 - Software Testing and Quality Assurance

• SQM includes defining standards for processes and
products and establishing processes to check that
these standards have been followed

UCSC - 2014 85

Key Points
• Software standards are important for quality

assurance as they represent an identification of ‘best
practice’

• Quality management procedures may be
documented in an organizational quality manual,

IT3205 - Software Testing and Quality Assurance

documented in an organizational quality manual,
based on the generic model for a quality manual
suggested in the ISO 9001 standard

• Product quality metrics are particularly useful for
highlighting anomalous components that may have
quality problems

UCSC - 2014 86

