
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

IT3205: Fundamentals of Software
Engineering

IT3205 - Software Design

Software Design

UCSC - 2014 2

Software Design

Duration: 8 hours

Learning Objectives

• Describe the important software design issues
and concepts.

• Compare different approaches to software
design.

IT3205 - Software Design

design.

• Identify suitable design approaches for a
problem.

UCSC - 2014 3

Detailed Syllabus
4.1 Design concepts

4.1.1 Abstraction

4.1.2 Architecture

4.1.3 Patterns

IT3205 - Software Design

4.1.4 Modularity
4.1.4.1 Cohesion

4.1.4.2 Coupling

4.1.5 Information hiding

4.1.6 Functional independence

4.1.7 Refinement

UCSC - 2014 4

Detailed Syllabus
4.2 Architectural design

4.2.1 Repository model

4.2.2 Client-server model

4.2.3 Layered model

4.2.4 Modular decomposition

IT3205 - Software Design

4.2.4 Modular decomposition

4.3 Procedural design using structured methods

UCSC - 2014 5

Detailed Syllabus
4.4 User Interface design

4.4.1. Human-computer interaction

4.4.2. Information presentation

4.4.3. Interface evaluation

IT3205 - Software Design

4.5 Design notations

UCSC - 2014 6

What is Software Design ?

• Design is the process of translating the
requirements in to a meaningful engineering
representation that can be implemented.

• In the context of software engineering, design

IT3205 - Software Design

• In the context of software engineering, design
focuses on transforming the requirements into
an implementable version of the software
system.

• Design stage has the greatest influence on
software quality.

UCSC - 2014 7

Software Design – Why it is important?

• A good design

– is the key for a successful software system.

– allows easy maintenance of a system.

– allows to achieve non-functional requirements

IT3205 - Software Design

– allows to achieve non-functional requirements
such as reliability, performance, reusability and
portability.

– facilitates the development and management
processes of a software project.

UCSC - 2014 8

Design activities
• Identification of the software architecture

• Architectural design
– Identification of the sub systems and components

• Data design
– Organizing the data so as to facilitate effective utilization

IT3205 - Software Design

– Organizing the data so as to facilitate effective utilization

• Procedural design
– How inputs are transformed into outputs

• Interface design
– How to make the system user friendly

• Algorithm design

• Design specification

UCSC - 2014 9

4.1 DESIGN CONCEPTS

IT3205 - Software Design

UCSC - 2014 10

Design Concepts
• Abstraction

– Permits one to concentrate on a problem at some level of generalization
without regard to irrelevant low level details

• Stepwise refinement and partitioning

– Increasing level of detail by allocating functionality to modules

• Modularity

IT3205 - Software Design

• Modularity

– Self contained and loosely coupled software components

• Information Hiding & Encapsulation

– Modules should be specified and designed so that code / data contained in a
module is directly inaccessible to other modules. Protecting information from
direct access by other modules and providing access to this information
through well defined interfaces is called Encapsulation.

• Polymorphism

– Modules should be flexible and promote reusability

UCSC - 2014 11

Abstraction
• This is an intellectual tool (a psychological notion)

which permits one to concentrate on a problem at
some level of generalization without regard to
irrelevant low level details

• Abstraction allows us to proceed with the

IT3205 - Software Design

• Abstraction allows us to proceed with the
development work without been held up in low-level
implementation details (yet to be discovered)

• Two forms of abstraction

– Procedural abstraction

– Data abstraction

UCSC - 2014 12

Abstraction
Example:

Develop software that will perform 2-D drafting (CAD)

Abstraction 1

Software will include a computer graphics interface which will enable

the draftsperson to see a drawing and to communicate with it via a

IT3205 - Software Design

the draftsperson to see a drawing and to communicate with it via a
mouse. All line and curve drawing, geometric computations will be
performed by the CAD software. Drawing will be stored in a drawings
file.

UCSC - 2014 13

Abstraction
Abstraction 2

CAD software tasks:

user interaction task;

2-D drawing task;

graphics display task;

IT3205 - Software Design

Procedural Abstraction

drawing file management task;

End.

Data Abstraction = defining a data object at different levels.

UCSC - 2014 14

Software Architecture

• Overall structure of the software components
and the ways in which that structure provides
conceptual integrity for a system.

IT3205 - Software Design

UCSC - 2014 15

Design Patterns
• When reusing software components, the developer

is constrained by the design decisions that have been
made by the implementers of these components.

• If the design decisions of the reusable components
conflicts whit the current requirements the

IT3205 - Software Design

conflicts whit the current requirements the
reusability will be impossible or the developed
system will become inefficient.

• One way to solve the problem is to reuse more
abstract designs that do not include implementation
details

UCSC - 2014 16

Modularity

• Software is divided into separately named,
addressable components called modules.

• The complexity of a program depends on
modularity.

IT3205 - Software Design

modularity.
Let C(x) = a measure of complexity and P1 and P2 be problems,

E(x) = a measure of effort to solve

If C(P1) > C(P2) then

E(P1) > E(P2)

Also, C(P1+P2) > C(P1) + C(P2)

Therefore, E(P1+P2) > E(P1) + E(P2)

UCSC - 2014 17

Modularity

• Modularity facilitates

– the development process

– the maintenance process

– the project management process

IT3205 - Software Design

– the project management process

– reusability

UCSC - 2014 18

How many modules?

IT3205 - Software Design

UCSC - 2014 19

Module Coupling
• A measure of the strength of the interconnections

between system components.

• Loose coupling means component changes are likely
to affect other components.

• Shared variables or control information exchange

IT3205 - Software Design

• Shared variables or control information exchange
lead to tight coupling.

• Loose coupling can be achieved by component
communication via parameters or message passing.

UCSC - 2014 20

Levels of Coupling
• Data Coupling

– Data is passed from one module to another using arguments

• Stamp Coupling
– More data than necessary is passed via arguments.

Eg. Pass the whole record instead of just the field being changed.

IT3205 - Software Design

• Control Coupling
– A flag is passed from one module to another affecting the functionality

of the second module

• External Coupling
– Coupling with the environment

(eg. Data files, other programs etc.).

UCSC - 2014 21

Levels of Coupling
• Common Coupling

– Occurs when modules access the same global data

IT3205 - Software Design

MODULE A MODULE B

UCSC - 2014 22

MODULE C MODULE D

Levels of Coupling
• Content Coupling

– One module directly affects the working of another. Calling module
can modify the called module or refer to an internally defined data
element.

IT3205 - Software Design

UCSC - 2014 23

Levels of Coupling
• Object Coupling

– Object oriented systems are loosely coupled. No shared state and
objects communicate using message passing. Object coupling occurs
when a class inherits attributes and methods of another class.
Changes to super class propagate to all sub classes.

IT3205 - Software Design

UCSC - 2014 24

Coupling

• Coupling should be minimized.

• Loosely coupled modules facilitate:

– Maintenance

– Development

IT3205 - Software Design

– Development

– Reusability

UCSC - 2014 25

Module Cohesion

• Interaction within a module. A measure of
how well a component fits together.

• High cohesion – A component should
implement a single logical entity or function

IT3205 - Software Design

implement a single logical entity or function

• Cohesion is a desirable design component
attribute as when a change has to be made, it
is localized in a single component.

UCSC - 2014 26

Levels of Cohesion
• Object Cohesion

– Occurs when a single entity is represented by the object and all
operations on the object, and no others are included within it. This is
the strongest type of cohesion and should be aimed by the designer.

• Functional Cohesion
– Occurs when all the elements of the module combine to complete one

IT3205 - Software Design

– Occurs when all the elements of the module combine to complete one
specific function. This also strong cohesion and should be
recommended.

• Sequential Cohesion
– Occurs when the activities (more than one purpose to the function)

combine such that the output of one activity is the input to the next.
Not as good as functional cohesion but still acceptable.

UCSC - 2014 27

Levels of Cohesion
• Communicational Cohesion

– Occurs when a module performs a number of activities on the same
input or output data.

For example customer maintenance functions in a business
information system such as add customer, delete customer, update

IT3205 - Software Design

information system such as add customer, delete customer, update
customer details and print customer details exhibits communicational
cohesion because they all operate on a customer file.

UCSC - 2014 28

Levels of Cohesion
• Procedural Cohesion

– Occurs when a modules’ internal activities bear little relationship to
one another but control flows one to another in sequence.

class MakeCake {

void addIngredients() { ... }

IT3205 - Software Design

void addIngredients() { ... }

void mix() { ... }

void bake() { ... } }

UCSC - 2014 29

Levels of Cohesion
• Temporal Cohesion

– Occurs when functionality is grouped simply because it occurs at the
same time. For example house keeping tasks at the start and end of an
application.

class InitFuns {

IT3205 - Software Design

class InitFuns {

void initDisk() { ... }

void initPrinter() { ... }

void initMonitor() { ... } }

UCSC - 2014 30

Levels of Cohesion
• Logical Cohesion

– Occurs when functionality is grouped by type. For example all creates
together, all updates together etc. This should be avoided at all cost.

class AreaFuns {

double circleArea() { ... }

IT3205 - Software Design

double circleArea() { ... }

double rectangleArea() { ... }

double triangleArea() { ... }}

UCSC - 2014 31

Levels of Cohesion
• Coincidental Cohesion

– Occurs when functionality is grouped randomly. Not even to be
considered as an option in design.

class MyFuns {

void initPrinter() { ... }

IT3205 - Software Design

void initPrinter() { ... }

double calcInterest() { ... }

Date getDate() { ... }}

UCSC - 2014 32

Information Hiding
• The principle of Information Hiding suggests that modules be

characterized by design decisions that (each) hides from all others. In
other words modules should be specified and designed so that
information (procedure and data) contained within a module is directly
inaccessible to other modules.

• However the modules should communicates using well defined interfaces.
Protecting information from direct access by other modules and providing

IT3205 - Software Design

Protecting information from direct access by other modules and providing
access to this information through well defined interfaces is called
Encapsulation.

• Because most data and procedure are hidden from other parts of the
software, inadvertent errors introduced during modification are less likely
to propagate to other locations within the software.

UCSC - 2014 33

Encapsulation
• Encapsulation is a technique for minimizing

interdependencies among separately written
modules by defining strict external interfaces.

• The external interface acts as a contract between a
module and its clients.

IT3205 - Software Design

module and its clients.

• If clients only depend on the interface, modules can
be re-implemented without affecting the client.

• Thus the effects of changes can be confined.

UCSC - 2014 34

Functional Independence

• Achieved by developing modules with single-
minded purpose and an aversion to excessive
interaction with other models

IT3205 - Software Design

UCSC - 2014 35

Refinement

• Process of elaboration where the designer
provides successively more detail for each
design component

IT3205 - Software Design

UCSC - 2014 36

Design with reuse
• Another important design consideration is reusability

of software components. Designing reusable
software components is extremely valuable.

• Some benefits of software reuse are;

– Increased reliability

IT3205 - Software Design

– Increased reliability

– Reduced process risks

– Effective use of specialists

– Standards compliance

– Accelerated Development

UCSC - 2014 37

4.2 ARCHITECTURAL DESIGN

IT3205 - Software Design

UCSC - 2014 38

Software Architectural Design
• The architectural design process is concerned with

establishing a basic structured framework for a system. It
involves identifying the major components of the system and
the communications between these components.

• Large systems are always decomposed into subsystems that
provide some related set of services. The initial design process

IT3205 - Software Design

provide some related set of services. The initial design process
of identifying these sub-systems and establishing a framework
for subsystem control and communication is called
architectural design and the output of this design process is a
description of the software architecture.

UCSC - 2014 39

Sub-Systems and Components
• Sub- Systems- A Sub-system is a system in its own right whose

operations are not depend on the services proved by the
other sub-systems. Sub systems are composed of modules
(components) and have defined interfaces which are used for
communication with other sub-systems.

• Components– A component (module) is normally a system

IT3205 - Software Design

• Components– A component (module) is normally a system
component that provides one or more services to other
modules. It makes use of services provided by other modules.
It is not normally considered as an independent system.
Modules are usually composed from a number of other,
simpler system components.

UCSC - 2014 40

Software components - An Example

IT3205 - Software Design

UCSC - 2014 41

Software components - An Example
• GetPDfile –A service to retrieve the printer description file for

a printer type

• PrinterInt –A service that transfers commands to a specified
printer.

• Print –A service to print a document

IT3205 - Software Design

• Print –A service to print a document

• GetQueue –Discover the state of a print queue

• Remove –Remove a job from the queue

• Transfer –Transfer a job to another queue

• Register -Register a printer with the printing service
component

• Unregister –unregister a printer

UCSC - 2014 42

Architectural Design Process
• System structuring

– The system is structured into a number of principal sub-
systems where a sub-system is an independent software
unit. Communications between sub-systems are identified.

• Control modelling

IT3205 - Software Design

• Control modelling

– A general model of the control relationships between the
parts of the systems is established.

• Modular decomposition

– Each identified sub-system is decomposed into modules.
The architect must decide on the types of module and
their interconnections.

UCSC - 2014 43

Architectural Design – An example

IT3205 - Software Design

UCSC - 2014 44

Repository Model
• Sub-systems making up a system must exchange information

so that they can work together effectively. One approach is to
keep all shared data in a central database that can be
accessed by all sub-systems. A system model based on a
shared database is called repository model.

IT3205 - Software Design

• This model is suited to applications where data is generated
by one sub-system and used by another. Examples of this type
of systems include command and control systems,
management information systems CAD systems and CASE
tools.

UCSC - 2014 45

Repository Model - An example

The architecture of an integrated CASE tool.

IT3205 - Software Design

UCSC - 2014 46

Repository Model - Advantages
• It is efficient way to share large amount of data. There os no

need to transmit data explicitly from one sub-system to
another.

• Activities such as backup recovery, access control and
recovery from error are centralized. They are the
responsibility of the repository manager. Tools can focus on

IT3205 - Software Design

responsibility of the repository manager. Tools can focus on
their principal function rather than be concerned with these
issue.

• The model of sharing is visible through the repository schema.
It is straight forward to integrate new tools given that they are
compatible with the agreed data model.

UCSC - 2014 47

Repository Model - Disadvantages
• Sub-systems must agree on a repository data model.

Inevitably, this is a compromise between the specific needs of
each tool. Performance may be adversely affected by this
compromise. It may be difficult or impossible to integrate new
sub-systems if their data models do not fit the agreed
schema.

IT3205 - Software Design

schema.

• Evolution may be difficult as a large volume of information is
generated according to an agreed data model. Translating this
to a new model will certainly be expensive.

• Different sub-systems may have different requirements for
security, recovery and backup policies. The repository model
forces the same policy on all sub-systems.

UCSC - 2014 48

Client-Server Model
• The client-server architectural model is a distributed system

model which shows how data and processing are distributed
across a range of processors.

• The major components of the model are:
1. A set of stand-alone servers which offer services to other

subsystems. Examples of servers are print servers, web servers and

IT3205 - Software Design

subsystems. Examples of servers are print servers, web servers and
data base servers.

2. A set of clients that call on the services offered by the servers.
Theses are normally sub-systems in their own right. There may be
several instances of a client program executing concurrently.

3. A network which allows the clients to access these services.

UCSC - 2014 49

Client-Server Model – An Example

IT3205 - Software Design

UCSC - 2014 50

The above system is multi-user hypertext system to provide a film and
photograph library. In this system, there are several severs which manage and
display the different type of media. Video frames need to be transmitted
quickly and in synchrony but at relatively low resolution. They may be
compressed in a store. Still pictures, however, must be sent at a high
resolution. The catalogue must be able to deal with a variety of queries and
provide links into the hypertext information systems. The client program is
simply an integrated user interface of these services.

Layered Model
• The layered model organizes the system in to layers

by modeling the interfacing of sub systems.

• Each layer provides a set of services.

• This model is also called abstract machine model.

IT3205 - Software Design

• Each layer defines an abstract machine language is
used to implement the next level of abstract
machine.

UCSC - 2014 51

Layered model of a version management system

IT3205 - Software Design

Configuration management layer

Object management system layer

UCSC - 2014 52

Database system layer

Operating system layer

Layered Model
• An example for layered model is OSI reference model

for network protocols.

• This model support the incremental development of
systems because some of the services provided by
the layer is made available to users while the layer is

IT3205 - Software Design

the layer is made available to users while the layer is
being developing.

UCSC - 2014 53

Modular Decomposition

• After a structural architecture has been
designed, the next stage of architectural
design process is the decomposition of sub-
system in to modules.

IT3205 - Software Design

system in to modules.

• There is not a rigid distinction between system
decomposition and modular decomposition.

UCSC - 2014 54

Modular Decomposition

• We consider two modules which may be used
when decomposing a sub-system into
modules.

1. An object oriented model

IT3205 - Software Design

1. An object oriented model

• The system decomposed into a set of communicating
objects.

2. A data flow model

• The system decomposed into functional modules which
accept input data and transform it, in some way, to
output data. This is also called a pipeline approach.

UCSC - 2014 55

4.3 PROCEDURAL DESIGN USING
STRUCTURED METHODS

IT3205 - Software Design

STRUCTURED METHODS

UCSC - 2014 56

Procedural design using structured methods

• For the component-level design for conventional
software components has proposed a set of
constrained logical constructs from which any
program could be formed.

• Each construct had a predictable logical structure.

IT3205 - Software Design

• Each construct had a predictable logical structure.

• Structured programming is a design technique that
constraints logic flow to three constructs that are
sequence, construct and repetition.

UCSC - 2014 57

Procedural design using structured methods

• The structured constructs reduces program
complexity and enhances readability, testability and
maintainability.

• These allow reader to recognize procedural elements
of a module rather than reading the design or code

IT3205 - Software Design

of a module rather than reading the design or code
line by line.

UCSC - 2014 58

4.4 USER INTERFACE DESIGN

IT3205 - Software Design

UCSC - 2014 59

User Interface Design
Good user interface design is critical to the success of a system.
An interface that is difficult to use will, at best, result in a high
level of user errors. At worst, users will simply refuse to use the
software system irrespective of its functionality.

If information is presented in a confusing or misleading way,
users may misunderstand the meaning of information. They may

IT3205 - Software Design

users may misunderstand the meaning of information. They may
initiate a sequence of actions that corrupt data or even cause
catastrophic system failure.

The system should assist the user providing help facilities and
should guide the user in the case of occurrence of an error.

UCSC - 2014 60

Graphical User Interfaces
• Although text based interfaces are still widely used, especially

in legacy systems, computer users now expect application
systems to have some form of graphical user interface.

• The advantages of GUI are:
1. They are relatively easy to learn and use. Users with no computing

experience can learn to use the interface after a brief training

IT3205 - Software Design

experience can learn to use the interface after a brief training
session.

2. The users have multiple screens (windows) for system interaction.
Switching from one task to another is possible without losing sight
of information generated during the first task.

3. Fast, full-screen interaction is possible with immediate access to
anywhere on the screen.

UCSC - 2014 61

Graphical User Interfaces - characteristics
• Windows

– Multiple windows allow different information to be displayed simultaneously
on the user’s screen

• Icons

– Icons represent different types of information. On some system icons
represents files, on others, icon represents processes.

Menus

IT3205 - Software Design

• Menus

– Commands are selected from a menu rather than typed in a command
language.

• Pointing

– A pointing device such as a mouse is used for selecting choices from a menu
or indicating items of interest in a window.

• Graphics

– Graphical elements can be mixed with text on the same display.

UCSC - 2014 62

The user interface design process

IT3205 - Software Design

UCSC - 2014 63

Important Design Considerations for Interfaces

• Response time
– too long and too short response times are unacceptable. Constancy in

response time helps the user to learn a pace for the interaction with
the computer

• Help
– help may be provided as either electronic manuals (add on help) or

IT3205 - Software Design

– help may be provided as either electronic manuals (add on help) or
integrated help (Microsoft office assistant)

• Error handling
– The error, cause and possible solutions should explain in simple terms.

UCSC - 2014 64

Important Design Considerations for Interfaces

• Adaptability
– with growing familiarity users may migrate from one user class to

another

• Familiarity
– The interface should use terms and concepts which are drawn from

the experience of the users

IT3205 - Software Design

the experience of the users

• Consistency
– Activating similar operations in the same way

• Options
– Alternative ways of doing things

UCSC - 2014 65

User interface design principles
• User familiarity

– The interface should use terms and concepts which are drawn from the
experience of the people who will make most use of the system.

• Consistency

– The interface should be consistent in that, wherever possible, comparable
operations should be activated in the same way.

• Recoverability

IT3205 - Software Design

• Recoverability

– The interface should include mechanisms to allow users to recover from
errors.

• User guidance

– The interface should provide meaningful feedback when errors occur and
provide context-sensitive user help facilities.

• User diversity

– The interface should provide appropriate interaction facilities for different
type of system user.

UCSC - 2014 66

Color in interface design
Some guidelines for effective use of color in user interfaces.

1. You should not use more than four or five separate colors in a window
and no more than seven in a system interface. Colors should be used
selectively and consistently.

2. Use color change to show a change in system status. If the display
changes color, this should mean that a significant event has occurred.

IT3205 - Software Design

changes color, this should mean that a significant event has occurred.

3. Use color coding to support the task which users are trying to perform. If
they have to identify anomalous instances, highlight these instances.

4. Be careful about color pairing. Some color combinations are not good for
the eye. (eg. Red and Blue)

5. Use color coding in a useful and consistent way. If one part of a system
displays error messages in red, then red should not be used for anything
else.

UCSC - 2014 67

Human computer Interaction

• This can be seen when a user enter data
into a computer system.

• There are number of approaches that
enhance user interaction.

IT3205 - Software Design

enhance user interaction.

UCSC - 2014 68

Human computer Interaction
• Direct interaction

– Involve a pointing device. User interact directly with objects on the
screen.

Eg: To delete a file, user may drag it directly to the trash can using mouse.

• Menu selection
– User has to select an option from a list of possibilities. It is often the

IT3205 - Software Design

– User has to select an option from a list of possibilities. It is often the
case that another screen object is selected at the same time and
command operates on that object. In this approach to delete a file,
user select the file menu and then select the delete command from
the list.

• Form fill
– User fills a form that includes fields and buttons. Some fields have

associated menus. Buttons initiate some actions on press.

UCSC - 2014 69

Human computer Interaction
• Command language

– User give necessary commands and parameters to instruct the
computer to perform a specific activity.

Eg: To delete a file, user issues delete command with the file name as
a parameter.

IT3205 - Software Design

• Natural language
– User issues commands in natural language. To delete a file, user may

type ”Delete file name xxx”.

The above styles can be mixed in an application.

UCSC - 2014 70

Interaction Styles - Advantages and Disadvantages
Interaction Style Main Advantage Main

Disadvantage
Application

example

Direct manipulation Fast and intuitive
interaction.
Easy to learn.

May be hard to
implement. Only
suitable where
there is a visual
metaphor for tasks

-Video games and
CAD system

IT3205 - Software Design

metaphor for tasks
and objects.

Menu selection Avoid user error.
Required little
typing.

Show for
experienced user.
Can be complex if
many menu
options.

-Most general
purpose systems

Form fill-in Simple data entry.
Easy to learn.

Takes up lot of
screen space.

-Stock control
-Personal loan
processing

UCSC - 2014 71

Interaction Styles - Advantages and Disadvantages
Interaction Style Main Advantage Main

Disadvantage
Application

example

Command language Powerful and
flexible.

Hard to learn.
Poor error
management.

-Operating systems
-Library information
retrieval systems.

Natural language Accessible to casual
users.

Requiring more
typing.

-Time table systems
-www information

IT3205 - Software Design

users.
Easily expanded.

typing.
Natural language
understanding
systems are
unreliable.

-www information
retrieval systems

UCSC - 2014 72

Information Presentation
• All interactive systems have to provide some way of

presenting information to users.

• The information presentation may simply be a direct
representation of the input information or it may present the
information graphically.

IT3205 - Software Design

• It is a good system design practice to keep software required
for information presentation separate from the information
itself.

• To some extend, this contradicts object-oriented philosophy
which suggest that operation on data should be defined with
the data itself.

UCSC - 2014 73

Information Presentation

IT3205 - Software Design

UCSC - 2014 74

Interface Evaluation

• Interface evaluation is the process of
accessing the usability of an interface and
checking that it meets user requirements.

• Systematic evaluation of a user interface

IT3205 - Software Design

• Systematic evaluation of a user interface
design can be as expensive process involving
cognitive scientist and graphics designers.

• An evaluation should be conducted against a
usability specification based on usability
attributes as shown below.

UCSC - 2014 75

Interface Evaluation

Attribute Description

Learn ability How long does it take a new user to
become productive with the system?

Speed of operation How well does the system response to
match the user’s work practices?

IT3205 - Software Design

match the user’s work practices?

Robustness How tolerant is the system of user error?

Recoverability How good is the system at recovering from
user errors?

Adaptability How closely is the system tied to a single
middle of work?

UCSC - 2014 76

4.5 DESIGN NOTATIONS

IT3205 - Software Design

UCSC - 2014 77

Design Notations

• Graphical design notation

– The activity diagram allows a designer to
represent all elements of structured
programming.

Activity diagram is the descendent of flowchart.

IT3205 - Software Design

– Activity diagram is the descendent of flowchart.

UCSC - 2014 78

Design Notations

• Graphical design notation

– Flow chart is simple pictorially

IT3205 - Software Design

UCSC - 2014 79

Tabular Design Notation
• Decision tables provides a notation to translate

actions and conditions into a tabular form.

• Following steps are applied to develop a decision
table.

1. List all actions that can be associated with a specific

IT3205 - Software Design

1. List all actions that can be associated with a specific
procedure.

2. List all conditions during execution of the procedure.

3. Associate specific sets of conditions with specific actions,
eliminating impossible combinations of conditions.

UCSC - 2014 80

Tabular Design Notation
• Define rules by indicating what action(s) occurs for a set of conditions.

IT3205 - Software Design

UCSC - 2014 81

Program Design Language
• This is also known as structured English or pscudo code.

• This uses vocabulary of one language (English) and overall
syntax (structured programming language) of another.

• PDL actually is not a programming language due to the use of
narrative text.

IT3205 - Software Design

narrative text.

• There are tools that can translate PDL into programming
language.

Program design language has been found as the best design
notation.

UCSC - 2014 82

