
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

IT3205: Fundamentals of Software
Engineering

IT3205 - Software Maintenance

Software Maintenance

UCSC - 2014 2

Software Maintenance

Duration: 3 hours

Learning Objectives
• Describe the types of software maintenance

• Describe the software maintenance process

• Describe activities of configuration
management

IT3205 - Software Maintenance

management

UCSC - 2014 3

Detailed Syllabus

7.1 Evolving nature of software

7.1.1 Different types of maintenance
7.1.1.1 Fault repair

7.1.1.2 Software adaptation

IT3205 - Software Maintenance

7.1.1.2 Software adaptation

7.1.1.3 Functionality addition or modification

7.1.2 Maintenance prediction

7.1.3 Re-engineering

UCSC - 2014 4

Detailed Syllabus

7.2 Configuration Management (CM)

7.2.1 Importance of CM

7.2.2 Configuration items

7.2.3 Versioning

IT3205 - Software Maintenance

7.2.3 Versioning

UCSC - 2014 5

7.1 EVOLVING NATURE OF
SOFTWARE

IT3205 - Software Maintenance

SOFTWARE

UCSC - 2014 6

Software change
• Software change is inevitable

– New requirements emerge when the software is used;

– The business environment changes;

– Errors must be repaired;

– New computers and equipment is added to the system;

IT3205 - Software Maintenance

– New computers and equipment is added to the system;

– The performance or reliability of the system may have to
be improved.

• A key problem for all organizations is implementing
and managing change to their existing software
systems.

UCSC - 2014 7

Importance of Evolution
• Organizations have huge investments in their

software systems

– they are critical business assets.

• To maintain the value of these assets to the business,
they must be changed and updated.

IT3205 - Software Maintenance

they must be changed and updated.

• The majority of the so�ware budget in large
companies is devoted to evolving existing software
rather than developing new software.

UCSC - 2014 8

A spiral model of Development and Evolution

IT3205 - Software Maintenance

UCSC - 2014 9

Evolution and Servicing

IT3205 - Software Maintenance

Initial
Development

Evolution Servicing Phase-out

UCSC - 2014 10

Development

Evolution and Servicing
• Evolution

– The stage in a software system’s life cycle where it is in operational use
and is evolving as new requirements are proposed and implemented
in the system.

• Servicing
– At this stage, the software remains useful but the only changes made

IT3205 - Software Maintenance

– At this stage, the software remains useful but the only changes made
are those required to keep it operational i.e. bug fixes and changes to
reflect changes in the software’s environment. No new functionality is
added.

• Phase-out
– The software may still be used but no further changes are made to it.

UCSC - 2014 11

Evolution processes
• Software evolution processes depend on

– The type of software being maintained;

– The development processes used;

– The skills and experience of the people involved.

• Proposals for change are the driver for system

IT3205 - Software Maintenance

• Proposals for change are the driver for system
evolution.

– Should be linked with components that are affected by the
change, thus allowing the cost and impact of the change to
be estimated.

• Change identification and evolution continues
throughout the system lifetime.

UCSC - 2014 12

Change Identification and Evolution Processes

IT3205 - Software Maintenance

Change Identification
Process

UCSC - 2014 13

Software Evolution
Process

New System Change Proposals

The Software Evolution Process

IT3205 - Software Maintenance

Impact
analysis

Change
request

Change
implementation

Release
planning

System
release

UCSC - 2014 14

System
enhancement

Release
planning

Fault
repair

Change Implementation
• Iteration of the development process where the revisions to

the system are designed, implemented and tested.

• A critical difference is that the first stage of change
implementation may involve program understanding,
especially if the original system developers are not
responsible for the change implementation.

IT3205 - Software Maintenance

responsible for the change implementation.

• During the program understanding phase, you have to
understand how the program is structured, how it delivers
functionality and how the proposed change might affect the
program.

UCSC - 2014 15

Urgent change requests
• Urgent changes may have to be implemented

without going through all stages of the software
engineering process

– If a serious system fault has to be repaired to allow normal
operation to continue;

IT3205 - Software Maintenance

operation to continue;

– If changes to the system’s environment (e.g. an OS
upgrade) have unexpected effects;

– If there are business changes that require a very rapid
response (e.g. the release of a competing product).

UCSC - 2014 16

The emergency repair process

IT3205 - Software Maintenance

Change
requests

UCSC - 2014 17

Analyze source
code

Modify source
code

Deliver modified
system

Program evolution dynamics
• Program evolution dynamics is the study of the

processes of system change.

• After several major empirical studies, Lehman and
Belady proposed that there were a number of ‘laws’
which applied to all systems as they evolved.

IT3205 - Software Maintenance

which applied to all systems as they evolved.

• There are sensible observations rather than laws.
They are applicable to large systems developed by
large organisations.
– It is not clear if these are applicable to other types of

software system.

UCSC - 2014 18

Change is inevitable
• The system requirements are likely to change while

the system is being developed because the
environment is changing. Therefore a delivered
system won't meet its requirements!

• Systems are tightly coupled with their environment.

IT3205 - Software Maintenance

• Systems are tightly coupled with their environment.
When a system is installed in an environment it
changes that environment and therefore changes the
system requirements.

• Systems MUST be changed if they are to remain
useful in an environment.

UCSC - 2014 19

Lehman’s Laws

IT3205 - Software Maintenance

Law Description

Continuing change A program that is used in a real-world environment must necessarily
change, or else become progressively less useful in that environment.

Increasing
complexity

As an evolving program changes, its structure tends to become more
complex. Extra resources must be devoted to preserving and

UCSC - 2014 20

simplifying the structure.

Large program
evolution

Program evolution is a self-regulating process. System attributes such
as size, time between releases, and the number of reported errors is
approximately invariant for each system release.

Organizational
stability

Over a program’s lifetime, its rate of development is approximately
constant and independent of the resources devoted to system
development.

Lehman’s Laws

IT3205 - Software Maintenance

Law Description

Conservation of familiarity Over the lifetime of a system, the incremental change in each
release is approximately constant.

Continuing growth The functionality offered by systems has to continually
increase to maintain user satisfaction.

UCSC - 2014 21

Declining quality The quality of systems will decline unless they are modified to
reflect changes in their operational environment.

Feedback system Evolution processes incorporate multiagent, multiloop
feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

Applicability of Lehman’s laws
• Lehman’s laws seem to be generally applicable to

large, tailored systems developed by large
organisations.

– Confirmed in early 2000’s by work by Lehman on the
FEAST project.

IT3205 - Software Maintenance

FEAST project.

• It is not clear how they should be modified for

– Shrink-wrapped software products;

– Systems that incorporate a significant number of COTS
components;

– Small organisations;

– Medium sized systems.

UCSC - 2014 22

Reasons for changes
• Errors in the existing system

– The performance or reliability of the system may have to
be improved.

• Changes in requirements

– New requirements emerge when the software is used.

IT3205 - Software Maintenance

– New requirements emerge when the software is used.

• Technological advances

– New computers and equipment is added to the system.

• Legislation and other changes

• The change in the business environment

UCSC - 2014 23

Software Maintenance
• Modifying a program after it has been put into use.

• The term is mostly used for changing custom
software. Generic software products are said to
evolve to create new versions.

• Maintenance does not normally involve major

IT3205 - Software Maintenance

• Maintenance does not normally involve major
changes to the system’s architecture.

• Changes are implemented by modifying existing
components and adding new components to the
system.

UCSC - 2014 24

Maintenance is inevitable
• The system requirements are likely to change while

the system is being developed because the
environment is changing. Therefore a delivered
system won't meet its requirements.

• Systems are �ghtly coupled with their environment.

IT3205 - Software Maintenance

• Systems are �ghtly coupled with their environment.
When a system is installed in an environment it
changes that environment and therefore changes the
system requirements.

• Systems MUST be maintained therefore if they are to
remain useful in an environment.

UCSC - 2014 25

Types of maintenance
• Corrective Maintenance

– to repair software faults. Changing a system to correct deficiencies in
the way meets its requirements.

• Adaptive Maintenance
– Maintenance to add to or modify the system’s functionality

– Modifying the system to satisfy new requirements

IT3205 - Software Maintenance

– Modifying the system to satisfy new requirements

– Modifying the system to suit new operation environment

• Perfective Maintenance
– Modifying the system to satisfy new requirements.

– Improving programs performance, structure, reliability etc. Making
changes to avoid future problems or prepare for future changes

UCSC - 2014 26

Maintenance costs
• Usually greater than development costs (2* to 100*

depending on the application).

• Affected by both technical and non-technical factors.

• Increases as software is maintained. Maintenance
corrupts the software structure so makes further

IT3205 - Software Maintenance

corrupts the software structure so makes further
maintenance more difficult.

• Ageing software can have high support costs
(e.g. old languages, compilers etc.).

UCSC - 2014 27

Reasons for high Maintenance cost
• Program age and structure

– The design and the programming practices used in
developing old systems may not be flexible, hence
modifying existing systems may be difficult.

• Team Stability

IT3205 - Software Maintenance

• Team Stability

– After a system has been delivered, it is normal for the
development team to be broken up and people work on
new projects. The new team responsible for the
maintenance of the system may not understand the design
decisions and hence lot of effort during the maintenance
process is taken up with understanding the existing
system.

UCSC - 2014 28

Reasons for high Maintenance cost
• Contractual responsibility

– The maintenance contract may be given to a difference
company rather than the original system developer. This
factor along with the lack of team stability, means that
there is no incentive for a development team to write the
software so that it is easy to change.

IT3205 - Software Maintenance

software so that it is easy to change.

• Staff skills

– Maintenance is seen as a less skilled process than system
development and is often allocated to junior staff
members. Programming languages and techniques used in
old systems may be obsolete, hence new staff members
may not like to learn these languages and techniques.

UCSC - 2014 29

Maintenance prediction
• Maintenance prediction is concerned with assessing

which parts of the system may cause problems and
have high maintenance costs

– Change acceptance depends on the maintainability of the
components affected by the change;

IT3205 - Software Maintenance

components affected by the change;

– Implementing changes degrades the system and reduces
its maintainability;

– Maintenance costs depend on the number of changes and
costs of change depend on maintainability.

UCSC - 2014 30

Change prediction
• Predicting the number of changes requires and

understanding of the relationships between a system
and its environment.

• Tightly coupled systems require changes whenever
the environment is changed.

IT3205 - Software Maintenance

the environment is changed.

• Factors influencing this relationship are

– Number and complexity of system interfaces;

– Number of inherently volatile system requirements;

– The business processes where the system is used.

UCSC - 2014 31

Software Re-engineering

• Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.

• Applicable where some but not all sub-

IT3205 - Software Maintenance

• Applicable where some but not all sub-
systems of a larger system require frequent
maintenance.

• Re-engineering involves adding effort to make
them easier to maintain. The system may be
re-structured and re-documented.

UCSC - 2014 32

Software Re-engineering

IT3205 - Software Maintenance

• What?

– Re-structuring or re-writing part or all of an existing system without changing
its functionality

• When?

– When some but not all sub-systems of a larger system require frequent
maintenance

– When hardware or software support becomes obsolete

UCSC - 2014 33

– When hardware or software support becomes obsolete

• How?

– The system may be re-structured and re-documented to make it easier to
maintain

• Why?

– Reduced risk
• New software development carries high risk.

– Reduced cost
• The cost of re-engineering is often significantly less than the costs of developing new software

Advantages of re-engineering

• Reduced risk

– There is a high risk in new software development.
There may be development problems, staffing
problems and specification problems.

IT3205 - Software Maintenance

• Reduced cost

– The cost of re-engineering is often significantly
less than the costs of developing new software.

UCSC - 2014 34

Forward engineering and re-engineering

IT3205 - Software Maintenance

UCSC - 2014 35

The re-engineering process

IT3205 - Software Maintenance

Original
program

Program
documentation

Modularized
program

Original data

Program structure
improvement

UCSC - 2014 36

Re-engineered
data

Structure
program

improvement

Program
modularization

Data
re-engineering

Source code
translation

Reverse
engineering

Re-engineering activities
• Source code translation

– The program is converted from an old programming
language to a more modern version of the same language
or to different language.

• Reverse engineering

IT3205 - Software Maintenance

• Reverse engineering

– The program is analyzed and information extracted from it
which help to document its organization and functionality.

• Program structure improvement

– The control structure of the program is analyzed and
modified to make it easier to read and understand.

UCSC - 2014 37

Re-engineering activities
• Program modularization

– Related parts of the program are grouped together and,
where appropriate, redundancy is removed. In some cases
this stage may involve architectural transformation.

• Data re-engineering

IT3205 - Software Maintenance

• Data re-engineering

– The data processed by the program is changed to reflect
program changes.

UCSC - 2014 38

Reengineering cost factors
• The quality of the software to be

reengineered.

• The tool support available for reengineering.

• The extent of the data conversion which is
required.

IT3205 - Software Maintenance

The extent of the data conversion which is
required.

• The availability of expert staff for
reengineering.
– This can be a problem with old systems based on

technology that is no longer widely used.

UCSC - 2014 39

Preventative maintenance by refactoring
• Refactoring is the process of making improvements to a

program to slow down degradation through change.

• You can think of refactoring as ‘preventative maintenance’
that reduces the problems of future change.

• Refactoring involves modifying a program to improve its

IT3205 - Software Maintenance

• Refactoring involves modifying a program to improve its
structure, reduce its complexity or make it easier to
understand.

• When you refactor a program, you should not add
functionality but rather concentrate on program
improvement.

UCSC - 2014 40

Refactoring and reengineering
• Re-engineering takes place after a system has been

maintained for some time and maintenance costs are
increasing. You use automated tools to process and
re-engineer a legacy system to create a new system
that is more maintainable.

IT3205 - Software Maintenance

that is more maintainable.

• Refactoring is a continuous process of improvement
throughout the development and evolution process.
It is intended to avoid the structure and code
degradation that increases the costs and difficulties
of maintaining a system.

UCSC - 2014 41

7.2 CONFIGURATION
MANAGEMENT (CM)

IT3205 - Software Maintenance

MANAGEMENT (CM)

UCSC - 2014 42

Configuration management
• CM is the development and application of standards and

procedures for managing an evolving software product.

• You need to manage evolving systems because, as they
evolve, many different versions of the software are created.

• These versions incorporate proposals for change, correc�ons

IT3205 - Software Maintenance

• These versions incorporate proposals for change, correc�ons
of faults and adaptations for different hardware and operating
systems.

• There may be several versions under development and in use
at the same time. You need to keep track of these changes
that have been implemented and how these changes have
been included in the software.

UCSC - 2014 43

Configuration Management
• All products of the software process may have to be

managed

– Specifications

– Designs

– Programs

IT3205 - Software Maintenance

– Programs

– Test data

– User manuals

• Thousands of separate documents are generated for
a large software system

UCSC - 2014 44

Configuration Management
• CM Plan

– A CM plan described the standards and procedures which
should be used for configuration management. The
starting point for developing the plan should be a set of
general, company-wide CM standards and these should be

IT3205 - Software Maintenance

general, company-wide CM standards and these should be
adapted as necessary for each specific project

UCSC - 2014 45

The contents of a CM plan
1. The definitions of what entities are to be managed and a formal

scheme for identifying these entities.

2. A statement of who takes responsibility for the CM procedures and
for submitting controlled entities to the CM team.

3. The CM policies that are used for change control and version
management.

IT3205 - Software Maintenance

management.

4. A description of the records of the CM process which should be
maintained.

5. A description of the tools to be used for CM and the process to be
applied when using these tools.

6. A definition of the configuration database which should used to
record configuration information.

UCSC - 2014 46

The configuration database
• All CM information should be maintained in a configuration

database

• allow queries
– Who has a particular system version?

– What platform is required for a particular version?

IT3205 - Software Maintenance

– What versions are affected by a change to component X?

– How many reported faults in version T?

• The CM database should preferably be linked to the so�ware
being managed
– When a programmer downloads a program it is ‘booked’ out to

him/her

– Could be linked to a CASE tool

UCSC - 2014 47

The change management process
Request change by completing a change request form

Analyze change request

If change is valid then

Assess how change might be implemented

Assess change cost

Submit request to change control board

If change is accepted then

IT3205 - Software Maintenance

If change is accepted then

repeat

make changes to software

submit changed software for quality approval

until software quality is adequate

create new system version

else

reject change request

else

reject change request

UCSC - 2014 48

Change request form

IT3205 - Software Maintenance

UCSC - 2014 49

Derivation history
• Record of changes applied to a document or code component

• Should record, in outline, the change made, the ra�onale for
the change, who made the change and when it was
implemented

• May be included as a comment in code. If a standard prologue

IT3205 - Software Maintenance

• May be included as a comment in code. If a standard prologue
style is used for the derivation history, tools can process this
automatically

UCSC - 2014 50

Versions/variants/releases
• Version

– An instance of a system which is functionally distinct in
some way from other system instances

• Variant

– An instance of a system which is functionally identical but

IT3205 - Software Maintenance

– An instance of a system which is functionally identical but
non-functionally distinct from other instances of a system

• Release

– An instance of a system which is distributed to users
outside of the development team

UCSC - 2014 51

Versions/variants/releases
• Version Numbering

– Simple naming scheme uses a linear derivation

e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

– Better way is Attribute Naming
• Examples of attributes are Date, Creator, Programming Language,

IT3205 - Software Maintenance

• Examples of attributes are Date, Creator, Programming Language,
Customer, Status etc

• AC3D (language =Java, platform = NT4, date = Jan 1999)

UCSC - 2014 52

Summary
• Software development and evolution can be thought of as an

integrated, iterative process that can be represented using a
spiral model.

• For custom systems, the costs of software maintenance
usually exceed the software development costs.

IT3205 - Software Maintenance

• The process of software evolution is driven by requests for
changes and includes change impact analysis, release
planning and change implementation.

• Lehman’s laws, such as the notion that change is continuous,
describe a number of insights derived from long-term studies
of system evolution.

UCSC - 2014 53

Summary
• There are 3 types of software maintenance, namely

Corrective, Adaptive and Perfective maintenance.

• Software re-engineering is concerned with re-structuring and
re-documenting software to make it easier to understand and
change.

IT3205 - Software Maintenance

• Refactoring, making program changes that preserve
functionality, is a form of preventative maintenance.

• Configuration management is essential to maintain the
versions of the system.

UCSC - 2014 54

