
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

IT3205: Fundamentals of Software
Engineering

IT3205 - Software Design

Coding

UCSC - 2014 2

Coding

Duration: 3 hours

Learning Objectives

• Select appropriate programming language and
development tools for a given problem

• Identify the features of a good program, good
programming practices and program

IT3205 - Software Design

programming practices and program
documentation

UCSC - 2014 3

Detailed Syllabus

5.1 Programming languages and development tools

5.2 Selecting languages and tools

IT3205 - Software Design

5.2 Selecting languages and tools

5.3 Good programming practices

UCSC - 2014 4

What is Coding (Implementation)?
• Transforms the design specification to source code that can be

executed on a computer.

• This is the final stage of the series of front end activities we
have been dealing with.

• Coding is relatively straight forward given a design

IT3205 - Software Design

• Coding is relatively straight forward given a design
specification.

• Coding is a minor activity compared to the other phases of
development.

• A good design may be spoiled by the bad choice of a
language.

• However, a bad design cannot be corrected through coding.

UCSC - 2014 5

What is Coding (Implementation)?
• Choice of the language and the coding style are important

issues to consider.

• The programmer translates the design into source code of the
chosen programming language.

• The language translator converts the source code in to

IT3205 - Software Design

• The language translator converts the source code in to
executable code in several steps.

• Certain design issues may not be supported by the language
in which case the coder may choose to violate design.

• Although design quality should not be compromised because
of a language issue, design approach may depend on the
language choice.

UCSC - 2014 6

Coding
• The goal of the coding is to implement the design in

the best possible manner.

• Coding activity affects both testing and maintenance
phases.

• Time spent in coding is a small percentage of the

IT3205 - Software Design

• Time spent in coding is a small percentage of the
total software cost, but the goal should be to reduce
the cost of later phases.

• Having readability and understandability as a clear
objective of the coding activity can itself help in
producing software that is more maintainable.

UCSC - 2014 7

5.1 PROGRAMMING
LANGUAGES AND DEVELOPMENT

IT3205 - Software Design

LANGUAGES AND DEVELOPMENT
TOOLS

UCSC - 2014 8

Language Features
This table describes the strengths and weaknesses of some of the more important
languages in current use.

IT3205 - Software Design

Language Features Strengths Weaknesses

Ada - Procedural
- Some object
orientation built in
exception handling.
- Strong type checking

- Strong type checking
reduces errors on
applications.
- US DOS support
- Good for safety critical

- Large run time system
requires.
- Expensive to develop
applications.
- Requires powerful

UCSC - 2014 9

- Strong type checking
- No pointers
- Defined standards

- Good for safety critical
and military
applications.
- Compliers meet the
defined standards.

- Requires powerful
machine to run on.

C - Procedural
- Weak type checking
- Very low level pointers
- Flexible

- Close to hardware/OS
- Fast and efficient
applications can be
built.
- Widely used

- Poor exception handling
support.
- Memory handling leads
to unreliable code.
- Compilers all different,
don’t meet standard.

Language Features
IT3205 - Software Design

Language Features Strengths Weaknesses

C++ - OO extension to C.
- Weak type checking
- Flexible
- Pointers

- All those of C and OO
concepts of
Polymorphism,
Inheritance (single &
multiple), Encapsulation
etc.

- As for C and can simple
write C.

COBOL - Procedural - Suited to batch TP - Large run time system

UCSC - 2014 10

COBOL - Procedural
- Strong I/O handling for
transaction processing
(TP).
- Defined standards

- Suited to batch TP
applications
- Widely used
- Most 4GLs interface to
COBOL.

- Large run time system
required.
- Old - many features
simply added on later.
- Not all compilers meet
standard.

Fortran - Procedural
- Strong arithmetic
support through
libraries.

- Suited to data analysis
where significant
arithmetic processing
required.

- Old - more modern
languages provide most of
the features.

Language Features
IT3205 - Software Design

Language Features Strengths Weaknesses

Java - Object Oriented
- Better type checking
than C but still
reasonably weak.
- Standard defined by
Sun Microsystems.

- Platform independent.
- Dynamic downloading
of classes.
- Good user interface
and network support
through libraries.
- Ideal for network
applications.

- Requires own run time
environment.
- Controlled by a
commercial organization.

UCSC - 2014 11

applications.

Pascal - Procedural
- Strong type checking
- Defined standard

Good teaching language - Not widely used in
industry
- Poor environment
support

Visual
Basic

- Simple procedural
language.
- Interpreted
- Extensive Windows
programming support

- Suited to small
applications and
prototyping.
- Some OO concepts in
user interface handling.
- Widely used

- Performance
- Complex data structures
cannot be modeled.

Language Features
IT3205 - Software Design

Language Features Strengths Weaknesses

Visual
C++

- C++ programming
environment for MS
Windows

- Support for windows
programming.
- User interface design.
- Syntax sensitive
editors.
- Some code generation

- Portability of code.

C # - Object oriented - In C# Microsoft has - Cannot perform unsafe

UCSC - 2014 12

C # - Object oriented
language derived from
C++ and Java.
- .NET includes a
Common Execution
engine and a rich class
library.
- The classes and data
types are common to all
of the .NET languages

- In C# Microsoft has
taken care of C++
problems such as
Memory management,
pointers.
- It supports garbage
collection, automatic
memory management
and a lot.

- Cannot perform unsafe
casts like convert double
to a Boolean.

5.2 SELECTING LANGUAGES AND
TOOLS

IT3205 - Software Design

TOOLS

UCSC - 2014 13

Selecting Languages and Tools
• There's no language suitable for all tasks, and there probably won't ever

be one.

• When choosing a programming language, you have to balance
programmer productivity, maintainability, efficiency, portability, tool
support, and software and hardware interfaces.

• Often, one of these factors will shape your decision. In other cases, the

IT3205 - Software Design

• Often, one of these factors will shape your decision. In other cases, the
choice depends on the productivity you gain from certain language
features, such as modularity and type checking, or external factors, such
as integrated development environment support.

• Finally, for some tasks, adopting an existing domain-specific language,
building a new one, or using a general-purpose declarative language can
be the right choice.

UCSC - 2014 14

Coding Practices
• Allow code to be written in a more predictable and

maintainable fashion.

• While working code can be written without these techniques
it is rare for such code to be maintainable other than by the
original author.

• There are three main areas to consider;

IT3205 - Software Design

• There are three main areas to consider;
– Reliability ->Is the software fault free?

Two complementary approaches:

1. Fault avoidance-develop so that errors are not introduced.

2. Fault tolerance-develop so that the program continues when faults
occur.

– Readability ->can be code to be easily maintained.

– Reuse ->can the code be used again.

UCSC - 2014 15

Programming for reliability

• Reliable code is that which conforms to its
specification and continues in operation in all but
most extreme circumstances.

• There are two techniques used to increase the
reliability of code,

IT3205 - Software Design

reliability of code,

1. avoidance and

2. tolerance

UCSC - 2014 16

Programming for reliability
• Following structured programming techniques leads

to code that is less likely to have faults and is easier
to correct.

– Fault avoidance
• Aims to ensure the code has few errors as possible.

IT3205 - Software Design

• Aims to ensure the code has few errors as possible.

– Fault tolerance
• Aims to produce code that will continue to function in the

presence of errors.

• Fault tolerance includes:

– Exception Handling

– Defensive programming

– Fault recovery

UCSC - 2014 17

Exception Handling
• An exception is an error or unexpected event.

Traditional languages, Pascal, C etc. have no specific
support for handling exceptions, newer languages,
Ada, Java, have some in built exception handling.

IT3205 - Software Design

Example:

– Procedure A calls Procedure B

– Procedure B calls Procedure C

– An exception occurs in procedure C

– B cannot continue

– Need to signal exception to A

UCSC - 2014 18

Exception Handling
• With traditional languages we must resort to setting

error or status variables which can be shared or
passed from procedure to procedure,

for example:
/* allocate an integer array of SIZE elements */

IT3205 - Software Design

/* allocate an integer array of SIZE elements */

int *intArray = (int *)malloc(SIZE);

if (intArray =» NULL)

{

/* no heap memory available */

error - MEMORY_ERROR;

return -1;

}

Still have to unwind the nested function calls.

UCSC - 2014 19

Exception Handling
With Java exception handling is built into the language

IT3205 - Software Design

Throw exception

class counter {

int total;

int number_values;

Catch exception

class myClass {

// Class definition

public void myMethod {

UCSC - 2014 20

int number_values;

// Counter methods

public int Average() {

if (this.number_values == 0)

throw new DivideException (),

else

// division code

}

}

public void myMethod {

counter counterOne;

// Method implementation

// Get the average

try {

counterOne.Average() ;

} catch (DivideException e) {

System.out.println("Division by zero");

}

}

}

Defensive programming
• Assume that there are faults and inconsistencies in the system

and validate data.

• Example checks are:
– internal data states, for example probabilities between 0 and 1, money

= integer + 2 decimal places etc.

– checksums

IT3205 - Software Design

– checksums

– array bounds checking

– division by 0

– pointer validation - check that pointer is allocated and points to a data
structure.

– If any problems occur then the system must recover to a safe state.

UCSC - 2014 21

Fault recovery

• Forward recovery, correct damaged system
state

• Error detection and correction of coded data

• File or database recovery

IT3205 - Software Design

• File or database recovery

• Backward recovery, restore system to a safe
state

• Database transaction roll-back

UCSC - 2014 22

Programming for readability
• One of the major problems with reviewing and

maintaining code is that the code is unreadable.

• A number of straight forward techniques are
available for improving the readability of the code
and therefore reducing review and maintenance

IT3205 - Software Design

and therefore reducing review and maintenance
effort.

– Naming conventions

– Data types

– Control constructs

UCSC - 2014 23

Naming conventions
• It is important on projects of more than one person or on the

development of software applications which are to be
maintained (all of them!) that some form of naming
conventions are drawn up at the start of the project.

• The naming conventions would cover such things as program
names, function and procedure names, variable names,

IT3205 - Software Design

names, function and procedure names, variable names,
constant names source file names and so on.

• This is important in reducing the effort required for anyone
except the author to read and understand the code.

UCSC - 2014 24

Naming conventions
• This is true during the development phase, when reviews and

such like are carried out, and during the maintenance phase
when the code has to be changed by someone unfamiliar with
it.

• Typically large organizations will have company wide naming
standards which must be followed by all projects.

IT3205 - Software Design

standards which must be followed by all projects.

• As well as following the standards laid down, names should
always be meaningful, for example the name of a function
should reflect the purpose of the function.

UCSC - 2014 25

Naming conventions
• Example naming conventions for the 'C' language might be:

1. All constant names are in upper case and begin C, for example
C_SPEED_OF_LIGHT

2. All variable names are in mixed case with each word beginning with
a capital, variable names may be prefixed with a lower case letter
indicating the type of the variable, i for int, l for long etc.,

IT3205 - Software Design

indicating the type of the variable, i for int, l for long etc.,

for example, int iCurrentTime;

3. All variable names should reflect the use of the variable, i.e. it should
describe the real world object represented.

for example;

List UnknownWordList; // Good

List u_list; // Bad

Loop indexes can use i, j etc.

UCSC - 2014 26

Naming conventions
• Example naming conventions for the 'C' language might be:

4. Function and procedure names are in mixed case with each word
beginning with a capital, function names may be prefixed with a
lower case letter indicating the return type of the function, i for int,
v for void etc.,

for example,

IT3205 - Software Design

for example,

void vCalculateTotal(List SubTotalList) {

}

5. Function and procedure names must describe the purpose of the
function or procedure.

6. Source code file names must reflect the contents of the file

for example,

CalculateTotal.c - contains the function CalculateTotal

UCSC - 2014 27

Data types

• Use abstract data types to make the code
clearer.

Example:

IT3205 - Software Design

Example:

Type TrafficLightColour is (red, amber, green);

ColourShowing, NextColour: TrafficLightColour;

UCSC - 2014 28

Control constructs

• Use the standard flow control constructs for
structured programming, sequence, selection
and iteration, flow should be from the top of
the program down.

IT3205 - Software Design

the program down.

• Loops, decision statements, routines etc.
should all have single entry and exit points,
avoid gotos, breaks,exits etc.

• Functions should have a single return.

UCSC - 2014 29

Control constructs
• Keep code simple - one possible complexity heuristic is;

1. Start with 1 for the straight path through the routine

2. Add 1 for each control keyword, if, while, repeat, and, or etc.

3. Add 1 for each keyword in a case. If the case does not have a default
it should.

IT3205 - Software Design

it should.

– given the above total then judge the complexity as follows:
• 1-5 Routine probably ok

• 6-10 May need some re-design and/or simplification

• >10 Too complex, redesign required.

– In addition to the above the amount of data, number of lines etc.
could be taken into account.

UCSC - 2014 30

Technical considerations
• Environment

– the language should support the features of the environment in which
the application is to run, for example if the application is to run on the
Windows operating system then the programming language and
development tools should help to reduce the effort required to
produce the user interface, that is use Visual C++ or Borland C++

IT3205 - Software Design

produce the user interface, that is use Visual C++ or Borland C++
rather than a basic C compiler and the Windows SDK.

• Language support
– the language selected must have good support within the

environment on which development will take place and in which the
application will run. It is much easier to develop mainframe data
processing applications in COBOL or some 4GL rather than 'C' or Ada.

UCSC - 2014 31

Technical considerations
• Performance

– applications which have critical speed and size performance
requirements cannot usually be built using an interpreted language
such as Basic or a language which requires a complex run time system
such as Smalltalk or Java as the overhead in the run time system is too
great.

IT3205 - Software Design

great.

• Safety / security
– safety critical and secure applications usually require a programming

language which supports these requirements. Thus a nuclear power
station control system might be written in Ada rather than 'C'.

• Interfaces to other systems
– if the application must interface to other systems then these may

restrict the languages which can be used.

UCSC - 2014 32

Non-technical considerations
Here we must look at the project as a whole and the business
objectives of the organization. It should be noted that these
considerations are typically more important than the purely
technical factors.

• Timescales

IT3205 - Software Design

– the project timescales may restrict the choice of languages, for
example selecting a language known by the programmers will reduce
timescales, or help to meet timescales.

• Maintenance
– if the application is to be passed on to a maintenance team then the

skills of the maintenance team and the nature of the other
applications being maintained may have a bearing on the language
chosen. Do you want to have to re-train the maintenance staff?

UCSC - 2014 33

Non-technical considerations
• Other applications

– if all other applications built and maintained by the organization are
written in COBOL, for example, then there is a very strong argument
for building new applications in COBOL.

• Available tools
– what compilers, debuggers are currently available in the workplace?

IT3205 - Software Design

– what compilers, debuggers are currently available in the workplace?
Buying new software to support the development may increase the
development costs significantly.

UCSC - 2014 34

Non-technical considerations
• Risk

– adopting new technology always carries an associated risk, on a
project which is critical to the business such risks may be
unacceptable.

• Morale
– programmers love to use the latest technology, on a non-critical

IT3205 - Software Design

– programmers love to use the latest technology, on a non-critical
project it may be beneficial to use an innovative approach to
development to retain the interest of the staff, for example Java could
be used to develop some small in-house utility. This has the added
advantage of bringing new technical knowledge into the organization.

UCSC - 2014 35

5.3 GOOD PROGRAMMING
PRACTICES

IT3205 - Software Design

PRACTICES

UCSC - 2014 36

Good Programming Practices
Before you write one line of code, be sure you:

– Understand the problem you’re trying to solve

– Understand basic design principles and concepts

– Pick a programming language that meets the needs of the
software to be built and the environment in which it will

IT3205 - Software Design

software to be built and the environment in which it will
operate

– Select a programming environment that provides tools
that will make your work easier

– Create a set of unit tests that will be applied once the
component you code is completed

UCSC - 2014 37

Good Programming Practices
As you begin writing code, be sure you:

– Constrain your algorithms by following structured programming
language

– Select data structures that will meet the needs of the design

– Understand the software architecture and create interfaces that are
consistent with it

IT3205 - Software Design

consistent with it

– Keep conditional logic as simple as possible

– Create nested loops in a way that makes them easily testable

– Select meaningful variable names and follow other local coding
standards

– Write code that is self-documenting

– Create visual layout that aids understanding

UCSC - 2014 38

Code Reviews
• A code review is also called technical review.

• The code review for a module is carried out after the
module is successfully compiled and all the syntax
errors eliminated.

• These are extremely cost effective strategies for

IT3205 - Software Design

• These are extremely cost effective strategies for
reduction in coding error in order to produce high
quality code.

• In a review, a work product is examined for defects
by individuals other than the person who produced
it.

UCSC - 2014 39

Code Reviews
• A work product is any important deliverable created

during the requirements, design, coding, or testing
phase of software development.

– Examples of work products are phase plans, requirements
models, requirements and design specifications, user

IT3205 - Software Design

models, requirements and design specifications, user
interface prototypes, source code, architectural models,
user documentation, and test scripts.

• Reviews can be conducted by individuals or group

• There are two types of code reviews;

1. Code walk-throughs

2. Code inspection.

UCSC - 2014 40

Code Reviews

• Code reviews can often find and remove
common vulnerabilities such as format string
exploits, race conditions, memory leaks and
buffer overflows, thereby improving software

IT3205 - Software Design

buffer overflows, thereby improving software
security.

• Improve the quality of the code being
reviewed

• Improve programmers

UCSC - 2014 41

Code Reviews

• A code review is not a meeting to;

– negatively criticize someone else's code

– criticize architecture or design (unless it is an
architectural or design review)

IT3205 - Software Design

architectural or design review)

– criticize a colleague

– determine whether someone is to be removed
from a project or not

– determine whether someone is performing up to
standard

UCSC - 2014 42

Code Walkthrough

• Objectives of Code Walkthrough are;

– To discover algorithmic and logical errors in the
code.

– To consider alternative implementations

IT3205 - Software Design

To consider alternative implementations

– To ensure compliance to standards &
specifications

UCSC - 2014 43

Code Walkthrough
• This an informal code analysis technique. In this

technique when a module has been coded, it is
compiled and eliminate all syntax errors.

• Some members of the development team are given
the code few days before the walkthrough meeting

IT3205 - Software Design

the code few days before the walkthrough meeting
to read and understand the code.

• Each member selects some test cases and simulates
the execution of the code by hand.

• The team performing the code walkthrough consists
of 3-7 members

UCSC - 2014 44

Code Inspection
• Software maintenance is the general process of

changing a system after it is diverted.

• This change includes corrections of coding errors,
design errors, specification errors or accommodation
of new requirements.

IT3205 - Software Design

of new requirements.

• There are three types of software maintenance:

1. repair software faults

2. adapt the software to a different operating system

3. add or modify the system’s functionality

UCSC - 2014 45

Code Inspection
• Errors detected during code inspection;

– Use of uninitialized variables

– Jumps in to loops

– Non terminating loops

– Incompatible assignments

IT3205 - Software Design

– Incompatible assignments

– Array indices out of bounds

– Improper storage allocation and deallocation

– Mismatches between actual and formal parameters in
procedure calls

– Improper modification of loops

UCSC - 2014 46

