
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

Learning Outcome

After successfully completing this course
students should be able to;

– explain the software engineering principles and
techniques that are used in developing quality
Software products

IT3205: Fundamentals of Software Engineering - Introduction

Software products

– apply software engineering principles and
techniques appropriately to develop a moderately
complex software system

UCSC - 2014 2

Outline of Syllabus

1. Introduction

2. Software Development Process Models

3. Requirements Analysis & Specification

4. Design

IT3205: Fundamentals of Software Engineering - Introduction

4. Design

5. Coding

6. Software Testing and Quality Assurance

7. Software Maintenance

8. Software Project Management

UCSC - 2014 3

Main References
Software Engineering by

1. Ian Sommerville, 7th edition,

Addison-Wesley, 2006.

Software Engineering: A practitioner's

IT3205: Fundamentals of Software Engineering - Introduction

Software Engineering: A practitioner's

2. approach by Roger S. Pressman,

6th edition, McGraw-Hill International
edition, 2005.

3. http://www.softwareengineering-9.com

UCSC - 2014 4

IT3205: Fundamentals of Software
Engineering

IT3205: Fundamentals of Software Engineering - Introduction

Introduction

UCSC - 2014 5

Introduction

Duration: 4 hours

Learning Objectives

• Describe what software is, different types of
software and software quality attributes

• Describe with the problems associated with
software and software development

IT3205: Fundamentals of Software Engineering - Introduction

software and software development

• Define what software engineering is and
explain why it is important

• State some professional issues related to
software development

UCSC - 2014 6

Detailed Syllabus
1.1 Software

1.1.1 What is software?

1.1.2 Types of software

1.1.3 Characteristics of Software

1.1.4 Attributes of good software

IT3205: Fundamentals of Software Engineering - Introduction

1.2 Software Engineering
1.2.1 What is software engineering?

1.2.2 Software engineering costs

1.2.3 What are the key challenges facing software engineering?

1.2.4 Systems engineering & software Engineering

1.2.5 Professional Practice

UCSC - 2014 7

1.1.1 WHAT IS SOFTWARE?

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 8

What is software?

• Instructions given to a computer (computer
programs)

• Software is a general term for the various
kinds of programs used to operate computers

IT3205: Fundamentals of Software Engineering - Introduction

kinds of programs used to operate computers
and related devices

• It can be;

– System Software

– Application Software

UCSC - 2014 9

What is software?

• Software is the set of instructions that makes
the computer work.

Example - When you type in words via the

IT3205: Fundamentals of Software Engineering - Introduction

Example - When you type in words via the
keyboard, the software is responsible for
displaying the correct letters, in the correct place
on the screen.

UCSC - 2014 10

What is software?

• Software is held either on your computer’s
hard disk, CDROM, DVD or on a diskette
(floppy disk) and is loaded (i.e. copied) into
the computer’s RAM (Random Access

IT3205: Fundamentals of Software Engineering - Introduction

the computer’s RAM (Random Access
Memory), as and when required.

UCSC - 2014 11

1.1.2 TYPES OF SOFTWARE

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 12

Main Types of Software

• There are two main types of software;

1. System Software

– computer software designed to operate and
control the computer hardware and to provide a

IT3205: Fundamentals of Software Engineering - Introduction

control the computer hardware and to provide a
platform for running application software

2. Application Software

– set of one or more programs designed to carry
out operations for a specific application

UCSC - 2014 13

System Software

IT3205: Fundamentals of Software Engineering - Introduction

System Software

System
Management

Programs

System
Support

Programs

System
Development

Programs

UCSC - 2014 14

•Operating Systems
•Operating Environments
•Database Management
Systems

•System Utilities
•Performance Monitors
•Security Monitors

Programs Programs Programs
•Programming Language
Translators
•Programming
Environments
•Computer Aided
Software Engineering
(CASE) Packages

Application Software

IT3205: Fundamentals of Software Engineering - Introduction

Application Software

General Purpose
Application
Programs

Application
Specific

Programs

UCSC - 2014 15

•Word Processing
•Electronic Spread Sheets
•Database Managers
•Graphics Software
•Integrated Packages

•Accounting, General Legers etc.
•Marketing-Sales Analysis etc.
•Manufacturing-Production Control etc.
•Finance-Capital Budgeting etc.

Programs Programs

Common Software Types

• System Software:

– System software is a collection of
programs is written to service the
other programs.

IT3205: Fundamentals of Software Engineering - Introduction

Eg: Operating system component,
drivers, telecommunication process.

UCSC - 2014 16

Common Software Types
• Business software:

management information
system software that access one
or more large database
containing business information

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 17

• Embedded software:

Embedded software resides in
read-only memory and is used to
control product and system for the
customer and industrial markets

Common Software Types
• Web-based software:

The network becomes a massive
computer providing an almost unlimited
software resources that can be accessed
by anyone with a modem.

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 18

• Artificial intelligence software:

AI software makes use of non-numerical
algorithms to solve the complex problems
that are not amenable to computing or
straightforward analysis.

Common Software Types
• Engineering and scientific software:

They have been characterized by
number crunching algorithms

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 19

• Personal computer software:

Personal computer software market has
burgeoned over the past two decades.

Word processing, spreadsheets, computer
graphic, multimedia and db management

1.1.3 CHARACTERISTICS OF
SOFTWARE

IT3205: Fundamentals of Software Engineering - Introduction

SOFTWARE

UCSC - 2014 20

Characteristics of Software
• Intangibility

– Cannot touch software

• Increase use will not introduce any defects

• Software is configurable

IT3205: Fundamentals of Software Engineering - Introduction

– able to build software by combining a basic set of software
components in different ways

– One can change the product easily by re-implementing it
without changing the design

• Custom built

– Most software are made upon order

UCSC - 2014 21

Cost of Hardware vs. Software

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 22

Failure curve for hardware (Pressman)

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 23

Failure curve for software (Pressman)

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 24

1.1.4 ATTRIBUTES OF GOOD
SOFTWARE

IT3205: Fundamentals of Software Engineering - Introduction

SOFTWARE

UCSC - 2014 25

Software Quality

• The degree in which software possesses a
desired combination of quality attributes

• The software should deliver the required

IT3205: Fundamentals of Software Engineering - Introduction

• The software should deliver the required
functionality and performance to the user and
should be maintainable, dependable and
acceptable

UCSC - 2014 26

Software Quality
• Maintainability

– Software must evolve to meet changing needs

• Dependability

– Software must be trustworthy

• Efficiency

IT3205: Fundamentals of Software Engineering - Introduction

• Efficiency

– Software should not make wasteful use of system
resources

• Acceptability

– Software must accepted by the users for which it was
designed. This means it must be understandable, usable
and compatible with other systems

UCSC - 2014 27

Bohem’s Classification

• Current Usefulness

– The qualities expected from a software system in
user’s point of view

IT3205: Fundamentals of Software Engineering - Introduction

• Potential Usefulness

– The qualities expected from a software system

UCSC - 2014 28

Current usefulness
• Efficiency

– Software should not make wasteful use of system
resources

• Reliability

• Usability

IT3205: Fundamentals of Software Engineering - Introduction

• Usability

• Correctness

– The degree with which software adheres to its specified
requirements

• User friendliness

• Robustness

UCSC - 2014 29

Potential usefulness
• Maintainability

– Software must evolve to meet changing needs. The ease
with which changes can be made to satisfy new
requirements or to correct deficiencies

• Modularity

IT3205: Fundamentals of Software Engineering - Introduction

• Modularity

• Reusability

– The ease with which software can be reused in developing
other software

• Portability

– The ease with which software can be used on computer
configurations other than its current one

UCSC - 2014 30

McCall’s Classification

• Product operation

• Product revision

• Product transition

IT3205: Fundamentals of Software Engineering - Introduction

• Product transition

UCSC - 2014 31

Product Operation
• Efficiency

– The degree with which software fulfills its purpose without
waste of resources

• Correctness

• User friendliness

IT3205: Fundamentals of Software Engineering - Introduction

User friendliness

• Usability

• Reliability

– The frequency and criticality of software failure, where
failure is an unacceptable effect or behavior occurring
under permissible operating conditions

• Robustness

UCSC - 2014 32

Product Revision

• Maintainability

• Flexibility

• Testability

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 33

Product Transition
• Interoperability

• Reusability

• Portability

1.2.1 INTRODUCTION TO
SOFTWARE ENGINEERING

IT3205: Fundamentals of Software Engineering - Introduction

SOFTWARE ENGINEERING

UCSC - 2014 34

Need for Software Engineering

• The economies of ALL developed nations are
dependent on software.

• More and more systems are software
controlled

IT3205: Fundamentals of Software Engineering - Introduction

controlled

• Expenditure on software represents a
significant fraction of GNP in all developed
countries

UCSC - 2014 35

Need for Software Engineering
• Software is found in products and situations

where very high reliability is expected

– E.g. Monitoring and controlling Nuclear power
plants

• Contain millions of lines of code

IT3205: Fundamentals of Software Engineering - Introduction

• Contain millions of lines of code

• Comparably more complex

Thus, need a systematic process to produce high
quality software product

UCSC - 2014 36

The Solution – Software Engineering

• Software engineering is concerned with
theories, methods and tools for professional
software development

• Greater emphasis on systematic , scientific

IT3205: Fundamentals of Software Engineering - Introduction

• Greater emphasis on systematic , scientific
development

• Computer assistance in software development
(CASE)

UCSC - 2014 37

The Solution – Software Engineering

• A concentration on finding out the user’s
requirements

• Formal/Semi Formal specification of the
requirements of a system

IT3205: Fundamentals of Software Engineering - Introduction

requirements of a system

• Demonstration of early version of a system
(prototyping)

• Greater emphasis on development of error
free easy to understand code

UCSC - 2014 38

What is software engineering?

• An engineering discipline that is concerned
with all aspects of software production

• Software engineers should adopt a systematic

IT3205: Fundamentals of Software Engineering - Introduction

• Software engineers should adopt a systematic
and organized approach to their work and use
appropriate tools and techniques depending
on the problem to be solved, the development
constraints and the resources available

UCSC - 2014 39

Software Engineering - Definitions

Simple Definition: Designing, building and
maintaining large software systems

Use of systematic, engineering approach in all

IT3205: Fundamentals of Software Engineering - Introduction

Use of systematic, engineering approach in all
stages of software development and project
management to develop high quality and
economical software using appropriate
software tools

UCSC - 2014 40

Software Engineering - Definitions
‘Software engineering is concerned with the theories,

methods and tools for developing, managing and
evolving software products’

– I Sommerville

IT3205: Fundamentals of Software Engineering - Introduction

‘The practical application of scientific knowledge in the
design and construction of computer programs and
the associated documentation required to develop,
operate and maintain them’

– B.W.Boehm

UCSC - 2014 41

Software Engineering - Definitions
'The establishment and use of sound engineering

principles in order to obtain economically software
that is reliable and works efficiently on real
machines’

– F.L. Bauer

IT3205: Fundamentals of Software Engineering - Introduction

– F.L. Bauer

‘The application of systematic, disciplined, quantifiable
approach to the development, operation, and
maintenance of software’

– IEEE Standard 610.12

UCSC - 2014 42

What makes software special?
• The main difference in software engineering compared to

other engineering disciplines can be listed as below;

1. It is difficult for a customer to specify requirements
completely

2. It is difficult for the developer to understand fully the

IT3205: Fundamentals of Software Engineering - Introduction

2. It is difficult for the developer to understand fully the
customer needs

3. Software requirements change regularly

4. Software is primarily intangible; much of the process of
creating software is also intangible, involving experience,
thought and imagination

5. It is difficult to test software exhaustively

UCSC - 2014 43

Members of a software engineering team

1. Project manager

2. Systems analyst

3. Designer

4. Programmer

IT3205: Fundamentals of Software Engineering - Introduction

4. Programmer

5. Tester

6. Technical clerk

UCSC - 2014 44

1.2.2 SOFTWARE ENGINEERING
COSTS

IT3205: Fundamentals of Software Engineering - Introduction

COSTS

UCSC - 2014 45

Software Engineering Costs

Distribution of costs across the different
activities in the software process depends on
the process used and the type of software
that is being developed.

IT3205: Fundamentals of Software Engineering - Introduction

that is being developed.

– Eg: Real-time software usually requires more
extensive validation and testing than web-based
systems.

UCSC - 2014 46

Software Engineering Costs

• In the waterfall approach, the cost of
specification, design, implementation and
integration are measured separately.

• System integration and testing is the most

IT3205: Fundamentals of Software Engineering - Introduction

• System integration and testing is the most
expensive development activity.

• Normally this is about 40% of the total
development costs

UCSC - 2014 47

Development Failures
IBM Survey, 2002

– 55% of systems cost more than expected

– 68% overran the schedules

– 88% had to be substantially redesigned

IT3205: Fundamentals of Software Engineering - Introduction

Bureau of Labour Statistics (2004)

– for every 6 new systems put into operation, 2 cancelled

– probability of cancellation is about 50% for large systems

– average project overshoots schedule by 50%

UCSC - 2014 48

Development Failures - Real Examples;

• Over Budget

Home Office IT project millions over budget

Home Office (UK) IT project runby Bull Information
Systems is expected to blow its budget by millions of
pounds and is hampered by a restrictive contract,

IT3205: Fundamentals of Software Engineering - Introduction

pounds and is hampered by a restrictive contract,
according to a leaked report. The National Audit Office
Reportis expected to reveal damning evidence that the
project to implement two systems – the National
Probation Service Information System, and the Case
Record and Management System will cost 118m pounds by
the end of the year, 70% over its original budget.

―www.computing.co.uk/News/111627

UCSC - 2014 49

Development Failures - Real Examples;

• Over Schedule

New air traffic system is already obsolete

National Air Traffic Services (Nats) is already looking at
replacing the systems at its newcontrol center at Swanwick
in Hampshire, even though the system doesn’t become

IT3205: Fundamentals of Software Engineering - Introduction

in Hampshire, even though the system doesn’t become
operational until next week. This project is six years late
and 180m pounds over budget.

Swanwick was originally meant to be operational by 1997,
but problems with the development of software by
Lockheed Martin caused delays, according to Nats.

―www.vnunet.com/News/1128597

UCSC - 2014 50

Development Failures - Real Examples;
• Safety

London Ambulance Dispatching System

The full introduction of the computer system effectively did away with
the radio and telephone calls to stations, with the computer
dispatching crews to answer calls. But within hours, during the
morning rush, it became obvious to crews and control room staff that
calls were going missing in the system; ambulances were arriving late

IT3205: Fundamentals of Software Engineering - Introduction

calls were going missing in the system; ambulances were arriving late
or doubling up on calls. Distraught emergency callers were also held in
a queuing system which failed to put them through for up to 30
minutes. Chris Humphreys, Nupe’s divisional officer, said that it was
hard to verify how many people might have died because of the delays
but it could be as many as 20.

Causes: The managers who produced the software were naïve. They
made a terrible mistake of trying to go on-line abruptly, without
running the new and old systems together for a while

UCSC - 2014 51

Development Failures - Real Examples;

• Programming/testing Error

Ariane 5 (June 1996)

It took the European Space Agency 10 years and $7 billion
to produce Ariane 5, a giant rocket capable of hurling a
pair of three ton satellites into orbit.

IT3205: Fundamentals of Software Engineering - Introduction

pair of three ton satellites into orbit.

At 39 seconds after launch, as the rocket reached an
altitude of two and a half miles, a self-destructmechanism
finished off Ariane 5, along with its payload of two
expensive and uninsured scientific satellites. The rocket
was makingan abrupt course correction that was not
needed, compensating for a wrong turn that had not taken
place.

UCSC - 2014 52

Development Failures - Real Examples;

• Programming/testing Error

Ariane 5 (June 1996)

The cause: Steering was controlled by the on-board
computer, which mistakenly thought the rocket needed a
course change because of the numbers, which in fact was

IT3205: Fundamentals of Software Engineering - Introduction

course change because of the numbers, which in fact was
an error, coming from the inertial guidance system. The
guidance system had in fact shut down 36.7 seconds after
launch,when the guidance system’s own computer tried to
convert one piece of data – the sideways velocity of the
rocket – from a 64 bit format to a 16 bit format = overflow
error.

UCSC - 2014 53

Statistics

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 54

1.2.3 KEY CHALLENGES FACING
SOFTWARE ENGINEERING

IT3205: Fundamentals of Software Engineering - Introduction

SOFTWARE ENGINEERING

UCSC - 2014 55

Key challenges facing Software Engineering

• Heterogeneity

– Developing techniques for building software that can cope
with heterogeneous platforms and execution
environments

• Delivery

IT3205: Fundamentals of Software Engineering - Introduction

• Delivery

– Developing techniques that lead to faster delivery of
software

• Trust

– Developing techniques that demonstrate that software can
be trusted by its users

UCSC - 2014 56

Software Problems

1. Time Schedules and cost estimates of many
software projects are grossly inaccurate

2. Software is costly

3. The quality of software is not satisfactory

IT3205: Fundamentals of Software Engineering - Introduction

3. The quality of software is not satisfactory

4. Software is difficult to maintain

5. The productivity of software people is not
satisfactory to meet the demand

UCSC - 2014 57

Problems of software development

• Large software is usually designed to solve
'wicked' problems

• Software engineering requires a great deal of
coordination across disciplines

IT3205: Fundamentals of Software Engineering - Introduction

coordination across disciplines

– Almost infinite possibilities for design trade-offs
across components

– Mutual distrust and lack of understanding across
engineering disciplines

UCSC - 2014 58

Problems of software development

• Systems must be designed to last many years
in a changing environment.

• The process of efficiently and effectively
developing requirements.

IT3205: Fundamentals of Software Engineering - Introduction

developing requirements.

• Tooling required to create the solutions, may
change as quick as the clients mind.

UCSC - 2014 59

Problems of software development

• User expectations:

– User expectations increase as the technology
becomes more and more sophisticated

IT3205: Fundamentals of Software Engineering - Introduction

• The mythical man-month factor:

– Adding personnel to a project may not increase
productivity

– Adding personnel to a late project will just make it
later

UCSC - 2014 60

Problems of software development

• Communications:

– Communications among the various
constituencies is a difficult problem. Sometimes
different constituencies speak completely
different languages. For example, developers may

IT3205: Fundamentals of Software Engineering - Introduction

different languages. For example, developers may
not have the domain knowledge of clients and / or
users. The larger the project, the more difficult the
communications problems become.

UCSC - 2014 61

Problems of software development

• Project characteristics:

– size / complexity

– novelty of the application

– response-time characteristics

IT3205: Fundamentals of Software Engineering - Introduction

– response-time characteristics

– security requirements

– user interface requirements

– reliability / criticality requirements

UCSC - 2014 62

1.2.4 SYSTEMS ENGINEERING &
SOFTWARE ENGINEERING

IT3205: Fundamentals of Software Engineering - Introduction

SOFTWARE ENGINEERING

UCSC - 2014 63

software engineering vs. system engineering

• System engineering

is concerned with all aspects of computer-based systems
development including hardware, software and process
engineering.

• Software engineering

IT3205: Fundamentals of Software Engineering - Introduction

• Software engineering

is part of this process concerned with developing the
software infrastructure, control, applications and
databases in the system.

• System engineers are involved in system
specification, architectural design, integration and
deployment.

UCSC - 2014 64

1.2.5 PROFESSIONAL PRACTICE

IT3205: Fundamentals of Software Engineering - Introduction

UCSC - 2014 65

Professional and ethical responsibility

• Software engineering involves wider
responsibilities than simply the application of
technical skills.

• Software engineers must behave in an honest

IT3205: Fundamentals of Software Engineering - Introduction

• Software engineers must behave in an honest
and ethically responsible way if they are to be
respected as professionals.

• Ethical behavior is more than simply
upholding the law.

UCSC - 2014 66

Issues of professional responsibility

• Confidentiality

– Engineers should normally respect the
confidentiality of their employers or clients
irrespective of whether or not a formal
confidentiality agreement has been signed.

IT3205: Fundamentals of Software Engineering - Introduction

confidentiality agreement has been signed.

• Competence

– Engineers should not misrepresent their level of
competence. They should not knowingly accept
work which is out with their competence.

UCSC - 2014 67

Issues of professional responsibility
• Intellectual property rights

– Engineers should be aware of local laws governing the use
of intellectual property such as patents, copyright, etc.
They should be careful to ensure that the intellectual
property of employers and clients is protected.

IT3205: Fundamentals of Software Engineering - Introduction

property of employers and clients is protected.

• Computer misuse

– Software engineers should not use their technical skills to
misuse other people’s computers. Computer misuse
ranges from relatively trivial (game playing on an
employer’s machine, say) to extremely serious
(dissemination of viruses).

UCSC - 2014 68

