
IT3205: Fundamentals of
Software Engineering

(Compulsory)(Compulsory)

BIT – 2nd Year

Semester 3

IT3205: Fundamentals of Software
Engineering

IT3205 - Software Development Process Models

Software Development Process

UCSC - 2014 2

Software Development Process
Models

Duration: 8 hours

Learning Objectives

• Describe different process models used for
software development

• Identify the most appropriate software
process model for a given problem

IT3205 - Software Development Process Models

process model for a given problem

• Identify how CASE tools can be used to
support software process activities

UCSC - 2014 3

Detailed Syllabus
2.1 What is a software process?

2.2 What is a software process model?
2.2.1 The waterfall model

2.2.2 Evolutionary development

IT3205 - Software Development Process Models

2.2.2 Evolutionary development

2.2.3 Component-Based Software Engineering (CBSE)

2.3 Process Iteration
2.3.1 Incremental delivery

2.3.2 Spiral development

UCSC - 2014 4

Detailed Syllabus
2.4 Rapid software development

2.4.1 Agile methods

2.4.2 Extreme programming

2.4.3 Rapid application development (RAD)

2.4.4 Software prototyping

IT3205 - Software Development Process Models

2.5 Rational Unified Process (RUP)

2.6 Computer Aided Software Engineering (CASE)
2.6.1 Overview of CASE approach

2.6.2 Classification of CASE tools

UCSC - 2014 5

2.1 WHAT IS A SOFTWARE
PROCESS?

IT3205 - Software Development Process Models

PROCESS?

UCSC - 2014 6

Software Process

• It is important to go through a series of steps
to produce high quality software. These steps
or the road map followed is called the
software process.

IT3205 - Software Development Process Models

software process.

• Software process is a set of ordered tasks
involving activities, constraints and resources
that produce a software system

• A process is important because it imposes
consistency and structure on a set of activities

UCSC - 2014 7

Software Process

• It guides our actions by allowing us to
examine, understand, control and improve the
activities that comprise the process

• The process of building a product is sometime

IT3205 - Software Development Process Models

• The process of building a product is sometime
called a lifecycle because it describes the life
of that product from conception through to its
implementation, delivery, use and
maintenance

UCSC - 2014 8

Generic activities in all software processes

• Specification

– what the system should do and its development
constraints

• Development

– production of the software system

IT3205 - Software Development Process Models

– production of the software system

• Validation

– checking that the software is what the customer wants

• Evolution

– changing the software in response to changing demands

UCSC - 2014 9

2.2 WHAT IS A SOFTWARE PROCESS
MODEL?

IT3205 - Software Development Process Models

MODEL?

UCSC - 2014 10

Software Process Models

you need to model the process because:

– when a team writes down a description of its
development process it forms a common
understanding of the activities, resources and
constraints involved in software development

IT3205 - Software Development Process Models

constraints involved in software development

– creating a process model helps the team find
inconsistencies, redundancies and commissions in
the process, as these problems are noted and
corrected the process becomes more effective

UCSC - 2014 11

Software Process Models

you need to model the process because:

– the model reflects the goals of development and
shows explicitly how the product characteristics
are to be achieved

each development is different and a process has

IT3205 - Software Development Process Models

– each development is different and a process has
to be tailored for different situations, the model
helps people to understand these differences

UCSC - 2014 12

2.2.1 THE WATERFALL MODEL

IT3205 - Software Development Process Models

UCSC - 2014 13

Waterfall Model

• Separate and distinct phases of specification
and development

• A linear sequential model

IT3205 - Software Development Process Models

UCSC - 2014 14

Waterfall Model Phases

IT3205 - Software Development Process Models

Requirement
Analysis &

Specification

Software Design

UCSC - 2014 15

Coding

Testing

Maintenance

Requirement Analysis & Specification
• The system’s services, constraints and goals are

established with the consultation with the users.

• This would include the understanding of the
information domain for the software, functionality,
behavior, performance, interface, security and

IT3205 - Software Development Process Models

behavior, performance, interface, security and
exceptional requirements.

• This requirements are then specified in a manner
which is understandable by both users and the
development staff.

UCSC - 2014 16

Software design

• The design process translates requirements
into a representation of the software that can
be implemented using software tools.

• The major objectives of the design process are

IT3205 - Software Development Process Models

• The major objectives of the design process are
the identification of the software components,
the software architecture, interfaces, data
structures and algorithms.

UCSC - 2014 17

Coding (implementation)

• The design must be translated to a machine
readable form.

• During this stage the software design is
realized as a set of programs or program units.

IT3205 - Software Development Process Models

realized as a set of programs or program units.

• Programming languages or CASE tools can be
used to develop software.

UCSC - 2014 18

Testing

• The testing process must ensure that the
system works correctly and satisfies the
requirements specified.

• After testing, the software system is delivered

IT3205 - Software Development Process Models

• After testing, the software system is delivered
to the customer.

UCSC - 2014 19

Maintenance

• Software will undoubtedly undergo changes
after it is delivered to the customer.

• Errors in the system should corrected and the
system should be modified and updated to

IT3205 - Software Development Process Models

system should be modified and updated to
suit new user requirements.

UCSC - 2014 20

Problems with the Waterfall Model
1. Real projects rarely follow the sequential flow that the

model proposes. Although the Waterfall model can
accommodate iteration, it does so indirectly.

2. It is often very difficult for the customer to state all
requirements explicitly. The Waterfall model has the
difficulty of accommodating the natural uncertainty that

IT3205 - Software Development Process Models

difficulty of accommodating the natural uncertainty that
exists at the beginning of many projects.

3. The customers must have patience. A working version of the
program(s) will not be available until late in the project time-
span. A major blunder, if undetected until the working
program is reviewed, can be disastrous.

UCSC - 2014 21

Problems with the Waterfall Model
4. The difficulty of accommodating change after the

process is underway.

5. One phase has to be complete before moving on to
the next phase.

6. Few business systems have stable requirements.

IT3205 - Software Development Process Models

6. Few business systems have stable requirements.

Comment : The Waterfall model is suitable for projects
which have clear and stable requirements.

UCSC - 2014 22

2.2.2 EVOLUTIONARY
DEVELOPMENT

IT3205 - Software Development Process Models

DEVELOPMENT

UCSC - 2014 23

Evolutionary Development

• Evolutionary development approach is
typically used to develop and implement
software in a evolutionary manner.

• This approach has been described by Steve

IT3205 - Software Development Process Models

• This approach has been described by Steve
McConnell as the "best practice for software
development and implementation".

UCSC - 2014 24

Evolutionary Development

• Early versions of the system are presented to
the customer and the system is refined and
enhanced based on customer feedback.

• The cycle continues until development time

IT3205 - Software Development Process Models

• The cycle continues until development time
runs out (schedule constraint) or funding for
development runs out (resource constraint).

UCSC - 2014 25

Prototyping
• It is very difficult for end-users to anticipate how

they will use new software systems to support their
work. If the system is large and complex, it is
probably impossible to make this assessment before
the system is built and put into use.

IT3205 - Software Development Process Models

the system is built and put into use.

• A prototype (a small version of the system) can be
used to clear the vague requirements. A prototype
should be evaluated with the user participation.

UCSC - 2014 26

Prototyping

• A prototype is a working model that is
functionally equivalent to a component of the
product.

• There are two types of Prototyping techniques

IT3205 - Software Development Process Models

• There are two types of Prototyping techniques

– Throw-away Prototyping

– Evolutionary Prototyping

UCSC - 2014 27

Throw-away Prototyping

IT3205 - Software Development Process Models

UCSC - 2014 28

Throw-away Prototyping

• The objective is to understand the system
requirements clearly.

• Starts with poorly understood requirements.
Once the requirements are cleared, the

IT3205 - Software Development Process Models

Once the requirements are cleared, the
system will be developed from the beginning.

• This model is suitable if the requirements are
vague but stable.

UCSC - 2014 29

Some problems with Throw-away Prototyping

1. Important features may have been left out of the prototype
to simplify rapid implementation. In fact, it may not be
possible to prototype some of the most important parts of
the system such as safety-critical functions.

IT3205 - Software Development Process Models

2. An implementation has no legal standing as a contract
between customer and contractor.

3. Non-functional requirements such as those concerning
reliability, robustness and safety cannot be adequately
tested in a prototype implementation.

UCSC - 2014 30

Evolutionary Prototyping

IT3205 - Software Development Process Models

UCSC - 2014 31

Evolutionary Prototyping
• Advantages

– Effort of prototype is not wasted

– Faster than the Waterfall model

– High level of user involvement from the start

– Technical or other problems discovered early – risk

IT3205 - Software Development Process Models

– Technical or other problems discovered early – risk
reduced

– A working system is available early in the process

– Misunderstandings between software users and
developers are exposed

– Mainly suitable for projects with vague and unstable
requirements

UCSC - 2014 32

Evolutionary Prototyping
• Disadvantages

– Prototype usually evolve so quickly that it is not cost-
effective to produce great deal of documentation

– Continual change tends to corrupt the structure of the
prototype system. Maintenance is therefore likely to be

IT3205 - Software Development Process Models

prototype system. Maintenance is therefore likely to be
difficult and costly

– It is not clear how the range of skills which is normal in
software engineering teams can be used effectively for this
mode of development

– Languages which are good for prototyping not always best
for final product

UCSC - 2014 33

2.2.3 COMPONENT-BASED
SOFTWARE ENGINEERING (CBSE)

IT3205 - Software Development Process Models

SOFTWARE ENGINEERING (CBSE)

UCSC - 2014 34

Component-Based Software Engineering

• Emphasizes the design and construction of
computer based systems using software
“components”.

• The process relies on reusable software

IT3205 - Software Development Process Models

• The process relies on reusable software
components.

• Similar to the characteristics of the spiral
model.

UCSC - 2014 35

Component-Based Software Engineering

Process

IT3205 - Software Development Process Models

UCSC - 2014 36

Component-Based Software Engineering

• Requirement specification and validation steps are
similar to the other processes.

• Component Analysis

IT3205 - Software Development Process Models

– During this stage try to find the software components
need for the implementation once the requirements are
specified.

• Requirements Modification

– Analyze the discovered software components to find out
whether it is able to achieve the specified requirements.

UCSC - 2014 37

Component-Based Software Engineering

• System Design with Reuse

– The frame work of the system is designed to get the
maximum use of discovered components. New software
may have to design if the reusable components are not
available.

IT3205 - Software Development Process Models

available.

• Development and integration

– Software that cannot be discovered is developed, and the
reusable components are integrated to create the new
system. The integration process, may be part of the
development process rather than a separate activity.

UCSC - 2014 38

2.3 PROCESS ITERATION

IT3205 - Software Development Process Models

UCSC - 2014 39

Process Iteration

• A process for arriving at a decision or a desired
result by repeating rounds of analysis or a
cycle of operations.

• The objective is to bring the desired decision

IT3205 - Software Development Process Models

• The objective is to bring the desired decision
or result closer to discovery with each
repetition (iteration).

• The iterative process can be used where the
decision is not easily revocable or where the
consequences of revocation could be costly.

UCSC - 2014 40

2.3.1 INCREMENTAL DELIVERY

IT3205 - Software Development Process Models

UCSC - 2014 41

Incremental Model

IT3205 - Software Development Process Models

UCSC - 2014 42

Incremental Development
• The Incremental development model involves

developing the system in an incremental fashion.

• The most important part of the system is fist
delivered and the other parts of the system are then
delivered according to their importance.

IT3205 - Software Development Process Models

delivered according to their importance.

• Incremental development avoids the problems of
constant change which characterize evolutionary
prototyping.

UCSC - 2014 43

Incremental Development

• An overall system architecture is established
early in the process to act as a framework.

• Incremental development is more manageable
than evolutionary prototyping as the normal

IT3205 - Software Development Process Models

than evolutionary prototyping as the normal
software process standards are followed.

• Plans and documentation must be produced.

UCSC - 2014 44

2.3.2 SPIRAL DEVELOPMENT

IT3205 - Software Development Process Models

UCSC - 2014 45

The Spiral Model

• This model is an evolutionary software
process model that couples the iterative
nature of prototyping with the controlled and
systematic aspects of the linear sequential

IT3205 - Software Development Process Models

systematic aspects of the linear sequential
model.

• Using the spiral model software is developed
in a series of incremental releases. During
early iterations, the incremental release might
be a paper model or prototype.

UCSC - 2014 46

The Spiral Model

IT3205 - Software Development Process Models

• The spiral model is divided into four main task
regions

1. Determine goals, alternatives, constraints

2. Evaluate alternatives and risks

UCSC - 2014 47

2. Evaluate alternatives and risks

3. Develop and test

4. Plan

Spiral Model

IT3205 - Software Development Process Models

UCSC - 2014 48

2.4 RAPID SOFTWARE
DEVELOPMENT

IT3205 - Software Development Process Models

DEVELOPMENT

UCSC - 2014 49

Rapid Software Development

• Because of rapidly changing business
environments, businesses have to respond to
new opportunities and competition.

• This requires software and rapid development

IT3205 - Software Development Process Models

• This requires software and rapid development
and delivery is not often the most critical
requirement for software systems.

• Businesses may be willing to accept lower
quality software if rapid delivery of essential
functionality is possible.

UCSC - 2014 50

Rapid Software Development

• Requirements

– Because of the changing environment, it is often
impossible to arrive at a stable, consistent set of
system requirements.

Therefore a waterfall model of development is

IT3205 - Software Development Process Models

– Therefore a waterfall model of development is
impractical and an approach to development
based on iterative specification and delivery is the
only way to deliver software quickly.

UCSC - 2014 51

2.4.1 AGILE METHODS

IT3205 - Software Development Process Models

UCSC - 2014 52

Agile Process
• Agile software engineering combines a philosophy

and a set of development guidelines.

• The philosophy encourages the customer satisfaction
and early incremental delivery of software.

• small and highly motivated software teams, informal

IT3205 - Software Development Process Models

• small and highly motivated software teams, informal
methods, minimal software engineering work
products, and overall development simplicity.

• The development guidelines stress delivery and
active and continuous communication between
developers and customers.

UCSC - 2014 53

Agile Process
• An agile process adapt incrementally. To accomplish

incremental adaptation, an agile team requires
customer feedback.

• An effective tool to get customer feedback is an
operational prototype or a portion of an operational

IT3205 - Software Development Process Models

operational prototype or a portion of an operational
system.

• Software increments must be delivered in short time
periods so that the adaptation keep pace with the
change This iterative approach enables the customer
to evaluate the software increment regularly and
provide necessary feedback to the software team.

UCSC - 2014 54

2.4.2 EXTREME PROGRAMMING

IT3205 - Software Development Process Models

UCSC - 2014 55

Extreme programming

• Extreme Programming (XP) is the most widely
used Agile Process model.

• XP uses an object oriented approach as its
development paradigm.

IT3205 - Software Development Process Models

development paradigm.

• XP encompasses a set of rules and practices
that occur within the context of four
framework activities;

planning, design , coding and testing.

UCSC - 2014 56

Extreme programming

• “Extreme Programming is a discipline of
software development based on values of
simplicity, communication, feedback and
courage”

IT3205 - Software Development Process Models

courage”

– Ron Jeffries

UCSC - 2014 57

Extreme programming Process

IT3205 - Software Development Process Models

UCSC - 2014 58

Extreme programming Process
1. Planning

– Begins with a set of stories (scenarios).

– Each story written by the customer is assigned a value depending on its
priority.

– The members of the XP team assess each story and assigned a cost measured
in development weeks.

– If a story has more that three weeks to develop the customer is asked to split

IT3205 - Software Development Process Models

– If a story has more that three weeks to develop the customer is asked to split
it.

– New stories can add any time.

– Customers and XP team work together to decide how to group stories for next
increment.

– AS development work proceeds, the customers can add stories, split stories
and eliminate them.

– The XP team then reconsiders all remaining releases and modify its plan
accordingly.

UCSC - 2014 59

Extreme programming Process
2. Design

– A simple design is preferred

– Design only consider the given stories

– Extra functionality discouraged

– Identify the object oriented classes that are relavant to the current system.

– The output of the design process is a set of CRC (Class Responsibility

IT3205 - Software Development Process Models

– The output of the design process is a set of CRC (Class Responsibility
Collaborator) cards.

3. Coding

– XP recommends developing a series of unit tests for each of the story

– Once the code is complete, units should be unit tested.

– Pair programming – two people work together at one computer.

UCSC - 2014 60

Extreme programming Process
4. Testing

– The unit tests that has been created in the coding stage should be
implemented using a framework that can be implemented.

– This enables regression testing

– Integration and validation can occur on a daily basis

– This provides the XP team with a continual indication of the progress and also
raise flags early if things are going wrong.

IT3205 - Software Development Process Models

raise flags early if things are going wrong.

– Acceptance tests are derived from user stories that have been implemented as
parts of the software release.

UCSC - 2014 61

Rapid Application Development

• Rapid Application Development (RAD) is both
a general term used to refer to alternatives to
the conventional waterfall model of software
development as well as the name for James

IT3205 - Software Development Process Models

development as well as the name for James
Martin's approach to rapid development.

• RAD is an incremental software development
process model that emphasizes an extremely
short development cycle.

UCSC - 2014 62

Rapid Application Development

• In general, RAD approaches to software
development put less emphasis on planning
tasks and more emphasis on development.

• If requirements are well understood and

IT3205 - Software Development Process Models

• If requirements are well understood and
project scope is constrained, the RAD process
enables a development team to create a ‘fully
functional system’ within very short time
periods (eg. 60 to 90 days)

UCSC - 2014 63

Rapid Application Development
• In contrast to the waterfall model, which emphasizes

rigorous specification and planning, RAD approaches
emphasize the necessity of adjusting requirements in
reaction to knowledge gained as the project
progresses.

IT3205 - Software Development Process Models

progresses.

• This causes RAD to use prototypes in addition to or
even sometimes in place of design specifications.
RAD approaches also emphasize a flexible process
that can adapt as the project evolves rather than
rigorously defining specifications and plans correctly
from the start.

UCSC - 2014 64

The RAD Model

IT3205 - Software Development Process Models

UCSC - 2014 65

Processes in the RAD Model
• Business modeling

– The information flow in a business system considering its
functionality.

• Data Modeling

– The information flow defined as part of the business

IT3205 - Software Development Process Models

– The information flow defined as part of the business
modeling phase is refined into a set of data objects that
are needed to support the business

• Process Modeling

– The data objects defined in the data modeling phase are
transformed to achieve the information flow necessary to
implement business functions.

UCSC - 2014 66

Processes in the RAD Model
• Application generation

– RAD assumes the use of 4GL or visual tools to generate the
system using reusable components.

• Testing and turnover

– New components must be tested and all interfaces must

IT3205 - Software Development Process Models

– New components must be tested and all interfaces must
be fully exercised

UCSC - 2014 67

Problems with the RAD model
• RAD requires sufficient human resources to create right

number of RAD teams.

• RAD requires developers and customers who are committed
to the rapid-fire activities necessary to get a system
completed in a much abbreviated time frame.

IT3205 - Software Development Process Models

• If a system cannot be properly modularized, building the
components necessary for RAD will be problematic.

• RAD is not applicable when technical risks are high. This
occurs when a new application makes heavy use of new
technology or when the new software requires a high degree
of interoperability with existing computer programs.

UCSC - 2014 68

2.4.4 SOFTWARE PROTOTYPING

IT3205 - Software Development Process Models

UCSC - 2014 69

Software Prototyping

• The first RAD alternative was developed by
Barry Boehm and was known as the spiral
model.

• Boehm and other subsequent RAD

IT3205 - Software Development Process Models

• Boehm and other subsequent RAD
approaches emphasized developing
prototypes as well as or instead of rigorous
design specifications.

• Prototypes had several advantages over
traditional specifications:

UCSC - 2014 70

Software Prototyping - Advantages
• Risk reduction: A prototype could test some of the

most difficult potential parts of the system early on
in the life-cycle. This can provide valuable
information as to the feasibility of a design and can
prevent the team from pursuing solutions that turn

IT3205 - Software Development Process Models

prevent the team from pursuing solutions that turn
out to be too complex or time consuming to
implement. This benefit of finding problems earlier in
the life-cycle rather than later was a key benefit of
the RAD approach. The earlier a problem can be
found the cheaper it is to address.

UCSC - 2014 71

Software Prototyping - Advantages
• Users are better at using and reacting than at

creating specifications. In the waterfall model it was
common for a user to sign off on a set of
requirements but then when presented with an
implemented system to suddenly realize that a given

IT3205 - Software Development Process Models

implemented system to suddenly realize that a given
design lacked some critical features or was too
complex. In general most users give much more
useful feedback when they can experience a
prototype of the running system rather than
abstractly define what that system should be.

UCSC - 2014 72

Software Prototyping - Advantages
• Prototypes can be usable and can evolve into the

completed product. One approach used in some RAD
methodologies was to build the system as a series of
prototypes that evolve from minimal functionality to
moderately useful to the final completed system. The

IT3205 - Software Development Process Models

moderately useful to the final completed system. The
advantage of this besides the two advantages above
was that the users could get useful business
functionality much earlier in the process.

UCSC - 2014 73

2.5 RATIONAL UNIFIED PROCESS
(RUP)

IT3205 - Software Development Process Models

(RUP)

UCSC - 2014 74

Unified Process

• The Unified Process or Rational Unified
Process (RUP) is a framework for object
oriented software engineering using UML.

• This is a use-case driven, architecture centric,

IT3205 - Software Development Process Models

• This is a use-case driven, architecture centric,
iterative and incremental software
development model.

UCSC - 2014 75

Unified Process

IT3205 - Software Development Process Models

UCSC - 2014 76

Unified Process

• Inception Phase:

– The Inception Phase of UP includes both customer
communication and planning activities. By
collaborating with the customer and end-users,
business requirements for the software are

IT3205 - Software Development Process Models

business requirements for the software are
identified, a rough architecture for the system is
proposed, and a plan for the iterative, incremental
nature of the project is developed.

UCSC - 2014 77

Unified Process

• Elaboration Phase:

– The Elaboration Phase encompasses the planning
and modeling activities of the generic process
model. Elaboration refines and expands the
primary use-cases that were developed as part of

IT3205 - Software Development Process Models

primary use-cases that were developed as part of
the inception phase and expands the architectural
representation to include five different views of
the software – the use-case model, the analysis
model, the design model, the implementation
model and the deployment model.

UCSC - 2014 78

Unified Process
• Construction Phase:

– The construction phase of the UP is identical to
the construction activity defined in the generic
software process. Using the architectural model as
input, the construction phase develops or

IT3205 - Software Development Process Models

input, the construction phase develops or
acquires the software components that will make
each usecase operational for end-users. As
components are developed unit tests are designed
and executed for each component. Integration
testing and acceptance testing are carried out
using use-cases to derive required test cases.

UCSC - 2014 79

Unified Process

• Transition Phase:

– The Transition Phase of the UP encompasses the
later stages of the generic construction activity
and the first part of the generic deployment
activity. Software is given to end-users for beta

IT3205 - Software Development Process Models

activity. Software is given to end-users for beta
testing. The software team creates necessary
support information (user manual, installation
manual etc.). At the end of transition phase, the
software increment becomes a usable software
release.

UCSC - 2014 80

Unified Process

• Production Phase:

– The production phase of the UP coincides with the
deployment activity of the generic process. During
this phase, the on going use of the software is
monitored, support for operating environment is

IT3205 - Software Development Process Models

monitored, support for operating environment is
provided, and defect reports and requests for
change are submitted and evaluated.

UCSC - 2014 81

Unified Process

• It is likely that at the same time the
construction, transition and production
phases are being conducted, work may have
already begun on the next software

IT3205 - Software Development Process Models

already begun on the next software
increment. This means that the unified
process do not occur in a sequence, but rather
with staggered concurrency.

UCSC - 2014 82

Major work products produced for each UP phases
Inception Phase

Vision document

Initial use-case model

Initial risk assessment

Project Plan

Business model

Prototypes

IT3205 - Software Development Process Models

Elaboration Phase

Use-case model

Requirements functional, non-functional

Analysis model

Software architecture

Preliminary design model

Revised risk list, revised prototypesPrototypes

UCSC - 2014 83

Revised risk list, revised prototypes

Transition Phase

Delivered software increment

Beta test reports

General user feedback

Construction Phase

Design model

Software components

Integrated software increment

Test cases

Test Plan and Procedures

Support documentation

2.6 COMPUTER AIDED SOFTWARE
ENGINEERING (CASE)

IT3205 - Software Development Process Models

ENGINEERING (CASE)

UCSC - 2014 84

2.6.1 OVERVIEW OF CASE
APPROACH

IT3205 - Software Development Process Models

APPROACH

UCSC - 2014 85

Overview of CASE Approach

• Computer Aided Software Engineering (CASE)
is the use of computer-based support in the
software development process.

• Embedding CASE technology in software

IT3205 - Software Development Process Models

• Embedding CASE technology in software
process led improvements in software quality
and productivity.

UCSC - 2014 86

CASE Automated Activities

• The development of graphical system models

• Understanding a design using a data
dictionary

• Generation of user interfaces

IT3205 - Software Development Process Models

• Generation of user interfaces

• Program debugging

• The automated translation of programs from
an old version

UCSC - 2014 87

CASE Limited Factors

• Providing artificial intelligence technology to
support design activities will be unsuccessful.

• Software engineering is a team based activity

IT3205 - Software Development Process Models

• Software engineering is a team based activity
that require interactivity among team
members. CASE technology does not support
for this.

UCSC - 2014 88

2.6.2 CLASSIFICATION OF CASE
TOOLS

IT3205 - Software Development Process Models

TOOLS

UCSC - 2014 89

CASE Tools
• Tools used to assist the all aspects of the software

development lifecycle are known as CASE Tools.

• Some typical CASE tools are:

– Code generation tools

IT3205 - Software Development Process Models

– Code generation tools

– Data modeling tools

– UML

– Refactoring tools

– QVT or Model transformation Tools

– Configuration management tools including revision control

UCSC - 2014 90

CASE Classification
• Help to understand the types of CASE tools and their

role in supporting software process activities.

• CASE tools can be classified in three perspectives.

1. Functional perspective: Classify according to the specific

IT3205 - Software Development Process Models

1. Functional perspective: Classify according to the specific
function.

2. Process perspective: Classify according to the process
activities that they support.

3. Integration perspective: Classify according to how they
are organized into integrated units that provide support
for one or more process activities.

UCSC - 2014 91

Functional Classification of CASE Tools
Tool Type Examples

Planning Tools PERT tools, ESTIMATION tools, Spreadsheets

Editing Tools Text editors, diagram editors, word processors

Change Management Tools Requirements traceability tools, change control systems

Configuration Management Tools Version management systems, system building tools

Prototyping Tools Very high level languages, User interface generators.

IT3205 - Software Development Process Models

Prototyping Tools Very high level languages, User interface generators.

Method Support Tools Design editors, data dictionaries, Code generators

Language-Processing Tools Compilers, Interpreters

Program analysis Tools Cross reference generators, Static analyzers, Dynamic analyzers

Testing Tools Test data generators, File comparators

Debugging Tools Interactive debugging systems

Documentation Tools Page layout programs, Image editors

Re-engineering Tools Cross reference systems, Program restructuring systems

UCSC - 2014 92

Another Classification Dimension

• CASE tools can be classified according to the
support offered to software process.

– Tools : Support individual process tasks such as
checking consistency of a design etc.

IT3205 - Software Development Process Models

checking consistency of a design etc.

– Workbenches : Support process phases or
activities such as specification etc.

– Environments : Support all or substantial part of
the software process

UCSC - 2014 93

Tools Workbenches and Environments

IT3205 - Software Development Process Models

UCSC - 2014 94

